Die Fokker-Planck-Gleichung (FPG, nach Adriaan Daniël Fokker (1887–1972) und Max Planck (1858–1947)) ist eine partielle Differentialgleichung. Sie beschreibt die zeitliche Entwicklung einer Wahrscheinlichkeitsdichtefunktion unter der Wirkung von Drift und Diffusion . In ihrer eindimensionalen Form lautet die Gleichung:

Lösung der 1D Fokker-Planck-Gleichung mit Drift- und Diffusionsterm. Die Anfangsbedingung ist eine Deltafunktion bei , und die Verteilung driftet nach links.

In der Wahrscheinlichkeitstheorie ist diese Gleichung auch bekannt als Kolmogorov-Vorwärtsgleichung und in diesem Fall nach dem Mathematiker Andrei Nikolajewitsch Kolmogorow benannt. Sie ist eine lineare parabolische partielle Differentialgleichung, die sich nur für einige Spezialfälle (einfache Körpergeometrie; Linearität der Randbedingungen, des Drift- und des Diffusionskoeffizienten) analytisch exakt lösen lässt.

Für verschwindende Drift und konstante Diffusion geht die FPG in die Diffusions- (oder auch Wärmeleitungs-) Gleichung über.

In Dimensionen lautet die Fokker-Planck-Gleichung

Von der Smoluchowski-Gleichung spricht man, wenn die Positionen der Teilchen im System beschreibt.

Für Markovsche Prozesse geht die FPG aus der Kramers-Moyal-Entwicklung hervor, die nach der zweiten Ordnung abgebrochen wird.

Von großer Bedeutung ist die äquivalente Beschreibung von Problemen durch Langevin-Gleichungen, die im Vergleich zur FPG die mikroskopische Dynamik stochastischer Systeme beschreiben und – im Gegensatz zur FPG – im Allgemeinen nichtlinear sind.

Herleitung

Bearbeiten

Die FPG lässt sich aus der kontinuierlichen Chapman-Kolmogorow-Gleichung, einer allgemeineren Gleichung für die Zeitentwicklung von Wahrscheinlichkeiten bei Markow-Prozessen, herleiten, falls   eine kontinuierliche Variable ist und die Sprünge in   klein sind. In diesem Fall ist eine Taylor-Entwicklung (in diesem Fall wird sie auch als Kramers-Moyal-Entwicklung bezeichnet) der Chapman-Kolmogorow-Gleichung

 

möglich und ergibt die FPG. Dabei ist   die Wahrscheinlichkeit, dass ein Zustand von   übergeht zum Zustand  . Man kann die Entwicklung auch direkt von der Mastergleichung starten, dann ist die Taylorentwicklung nach der Zeit nicht mehr nötig.

Unter der Annahme, dass die Übergangswahrscheinlichkeit   bei großen Abständen   klein ist (eben nur kleine Sprünge stattfinden) kann man folgende Taylor-Entwicklung verwenden (unter Benutzung der Summenkonvention):

 

Durch Ausführen der Integration (da   nicht von   abhängt kann es aus den Integralen herausgezogen werden) erhält man dann

 

mit

 
 

Stationäre Lösung

Bearbeiten

Die stationäre Lösung   der eindimensionalen FPG, d. h.   für alle  , ist gegeben durch

 

wobei die Normierungskonstante   mit Hilfe der Bedingung   bestimmt werden kann. Dabei ist zu beachten, dass das Integral für den unteren Rand   verschwindet.

Im Fall höherer Dimensionen lässt sich im Allgemeinen keine stationäre Lösung mehr finden; hier ist man auf verschiedene Näherungsverfahren angewiesen.

Zusammenhang mit stochastischen Differentialgleichungen

Bearbeiten

Sei für die Funktionen   und  . Dann ist die stochastische Differentialgleichung für den Ito-Prozess   (in der Ito-Interpretation) gegeben durch

 ,

wobei   einen  -dimensionalen Wiener-Prozess (Brownsche Bewegung) bezeichnet. Dann erfüllt die Wahrscheinlichkeitsdichtefunktion   der Zufallsvariablen   eine FPG, bei der Drift- bzw. Diffusionskoeffizienten gegeben sind durch   und  .

Fokker-Planck-Gleichung und Pfadintegral

Bearbeiten

Jede Fokker-Planck-Gleichung ist äquivalent zu einem Pfadintegral. Dies folgt z. B. daraus, dass die allgemeine Fokker-Planck-Gleichung für   Variablen  

 

dieselbe Struktur wie die Schrödingergleichung hat. Der Fokker-Planck-Operator   entspricht dem Hamilton-Operator, die Wahrscheinlichkeitsdichtefunktion   entspricht der Wellenfunktion. Das zur Fokker-Planck-Gleichung äquivalente Pfadintegral lautet entsprechend (siehe Pfadintegral)

 

wobei   ein konstanter Normierungsfaktor ist. Pfadintegrale dieser Art sind in der kritischen Dynamik Ausgangspunkt für Störungsrechnung und Renormierungsgruppe.[1] Die Variablen   stehen dabei z. B. für die Fourierkomponenten des Ordnungsparameters. Die Variablen   heißen Responsevariablen[1]. Die Lagrange-Funktion   enthält die Responsevariablen nur in quadratischer Form. Im Unterschied zur Quantenmechanik ist es hier jedoch nicht zweckmäßig, die  -Integrationen auszuführen.

Fokker-Planck-Gleichung in der Plasmaphysik

Bearbeiten

Die Fokker-Planck-Gleichung ist in der Plasmaphysik vor allem deshalb von Bedeutung, da der Stoßterm der Boltzmann-Gleichung für Plasmen als Fokker-Planck-Term geschrieben werden kann. Der Grund hierfür ist, dass die Bewegung der Teilchen im Plasma von den vielen Stößen mit weit entfernten Partnern dominiert wird, welche nur kleine Änderungen der Geschwindigkeit bewirken (Drift, Diffusion); starke Stöße mit nahen Teilchen sind dagegen vergleichsweise selten und deshalb oft vernachlässigbar.

Die Gleichung wird auch als Landau-Gleichung bezeichnet, da sie erstmals von Lew Dawidowitsch Landau aufgestellt wurde, allerdings nicht in ihrer Fokker-Planck-Form, die im Folgenden beschrieben wird.

In der Landau-Gleichung gibt die Einteilchen-Verteilungsdichte im Geschwindigkeitsraum für Teilchen vom Typ  ,   an, wie viele Teilchen es bei einer bestimmten Geschwindigkeit   gibt. In einem Plasma, auf das keine äußeren Kräfte wirken, kann die Änderung der Verteilungsdichte durch Kollisionen mit Teilchen vom Typ   näherungsweise beschrieben werden durch die Gleichung:

 

mit

 

und

 

Dabei ist

  •   der Coulomb-Logarithmus: Je größer sein Wert, umso stärker die Dominanz vieler leichter Kollisionen, und umso besser die Gültigkeit der Landau-Fokker-Planck-Gleichung
  •   und   die elektrischen Ladungen der Teilchensorten
  •   ihre Masse.

Da die Teilchen im Plasma auch mit Teilchen der gleichen Spezies kollidieren, ist die Gleichung normalerweise nichtlinear.

Diese Gleichung erhält die Teilchenzahl, den Impuls und die Energie. Außerdem erfüllt sie das H-Theorem, d. h. Stöße führen zu einer Maxwell-Boltzmann-Geschwindigkeitsverteilung.

Siehe auch

Bearbeiten
Bearbeiten

Literatur

Bearbeiten
  • Crispin Gardiner: Stochastic Methods. A Handbook for the natural and social Sciences. 4. edition. Springer, Berlin u. a. 2009, ISBN 978-3-540-70712-7 (Springer series in synergetics = Springer complexity).
  • Hartmut Haug: Statistische Physik. Gleichgewichtstheorie und Kinetik. 2. neu bearbeitete und erweiterte Auflage. Springer, Berlin u. a. 2006, ISBN 3-540-25629-6 (Springer-Lehrbuch).
  • Linda E. Reichl: A Modern Course in Statistical Physics. University of Texas Press. 1980, ISBN 0-7131-3517-4
  • Hannes Risken: The Fokker-Planck Equation. Methods of Solutions and Applications. 2. edition., 3. printing, study edition. Springer, Berlin u. a. 1996, ISBN 3-540-61530-X, (Springer Series in Synergetics 18).
  • Arthur G. Peeters, Dafni Strintzi: The Fokker-Planck equation, and its application in plasma physics. Ann. Phys. 17, No 2-3, 124 (2008). doi:10.1002/andp.200710279.
  • K.-H. Spatschek: Theoretische Plasmaphysik. Eine Einführung. Teubner, Stuttgart 1990, ISBN 3-519-03041-1.

Einzelnachweise

Bearbeiten
  1. a b H. K. Janssen: Lagrangean for Classical Field Dynamics and Renormalization Group Calculations of Dynamical Critical Properties. In: Z. Phys. B. 23. Jahrgang, 1976, S. 377.