Fourier-Transformation

mathematische Methode; zerlegt kontinuierliche, aperiodische Signale in ein kontinuierliches Spektrum
(Weitergeleitet von Fourier-Transformierte)

Die Fourier-Transformation (genauer die kontinuierliche Fourier-Transformation; Aussprache: [fuʁie]) ist eine mathematische Methode aus dem Bereich der Fourier-Analyse, mit der aperiodische Signale in ein kontinuierliches Spektrum zerlegt werden. Die Funktion, die dieses Spektrum beschreibt, nennt man auch Fourier-Transformierte oder Spektralfunktion. Es handelt sich dabei um eine Integraltransformation, die nach dem Mathematiker Jean Baptiste Joseph Fourier benannt ist. Fourier führte im Jahr 1822 die Fourier-Reihe ein, die jedoch nur für periodische Signale definiert ist und zu einem diskreten Frequenzspektrum führt.

Es gibt einige Anwendungsfälle, in denen die Fourier-Transformation mittels eines Computers berechnet werden soll. Dafür wurde die Diskrete Fourier-Transformation beziehungsweise die Schnelle Fourier-Transformation eingeführt.

Definition

Bearbeiten

Sei   eine integrierbare Funktion, wobei   den Lebesgue-Raum bezeichnet. Die (kontinuierliche) Fourier-Transformierte   von   ist definiert durch

 

und die zugehörige inverse Transformation lautet:

 

Dabei gilt:   und   sind  -dimensionale Volumenelemente,   die imaginäre Einheit und   das Standardskalarprodukt der Vektoren   und  .

Die Normierungskonstante ist in der Literatur nicht einheitlich. In der Theorie der Pseudodifferentialoperatoren und in der Signalverarbeitung ist es üblich, den Faktor   in der Transformation wegzulassen, sodass stattdessen die Rücktransformation den Vorfaktor   erhält. Die Transformation lautet dann:

 
 

Hier taucht ein Vorfaktor auf, so dass die Anwendung des Satzes von Plancherel nicht direkt möglich ist, weil die Fouriertransformation dann keine unitäre Abbildung mehr auf   ist und so die Signalleistung ändert. Dies kann jedoch (wie bei allen Orthogonaltransformationen) einfach durch eine Substitution (Reskalierung der Abszisse) ausgeglichen werden und stellt damit kein grundlegendes Problem dar. Genau dies wird in der Literatur zu Signalverarbeitung und Systemtheorie vorgeschlagen, indem von der natürlichen Frequenz auf die Kreisfrequenz   (die den Faktor beinhaltet) übergegangen wird:

 
 

Die reelle Form der Fourier-Transformation wird als Hartley-Transformation bezeichnet. Für reelle Funktionen   kann die Fourier-Transformation durch die Sinus- und Kosinus-Transformation substituiert werden.

Anwendungsfälle

Bearbeiten

Kompressionsverfahren für die digitale Kommunikation

Bearbeiten

Die Kompression von digitalen Daten auf Basis der Fourier-Transformation ist eine zentrale Technologie für Kommunikation, Datenaustausch und Streaming von Medien im (mobilen) Internet.[1]

Beispielsweise wird zur Kompression von Audio-Daten (etwa um eine MP3 Datei zu erzeugen) das Audio-Signal in den Frequenz-Raum transformiert. Die Transformation erfolgt über das Verfahren der (modifizierten) diskreten Kosinustransformation, welches der schnellen Fourier-Transformation ähnelt. Im Frequenzraum werden dann alle Frequenzen, die Menschen nicht hören können oder die nur wenig zum subjektiven Empfinden des Klangs beitragen, entfernt. Das Ergebnis wird im letzten Schritt aus dem Frequenz-Raum rücktransformiert – daraus erhält man, auf Grund des verringerten Frequenzumfangs, eine deutlich kleinere (komprimierte) Audio-Datei.[2]

In vergleichbaren Verfahren können Bilder (JPEG Kompression) oder Filme (MPEG-4) komprimiert werden.

Signalanalyse

Bearbeiten

In der Signalanalyse werden mittels Fourier-Transformation Frequenzanalysen von Signalen durchgeführt. Hierzu wird das Verfahren der diskreten Fourier-Transformation bzw. der schnellen Fourier-Transformation genutzt. Ein Beispiel für die Vielzahl von technischen Anwendungen ist die Nutzung der Signalanalyse bei der Erstellung von Bildern mittels Magnetresonanztomographie.[3]

Beispiel Signalanalyse in der Akustik

Bearbeiten

Der reine Kammerton   ist eine Sinuswelle mit der Frequenz 440 Hz, also 440 Schwingungen pro Sekunde. Eine ideale Stimmgabel gibt genau dieses Sinussignal ab. Der gleiche Ton gespielt mit einem anderen Musikinstrument (nicht-ideale Stimmgabel), ist eine Zusammensetzung/Überlagerung aus Wellen verschiedener Wellenlängen. Diese sind bezüglich ihrer Frequenz normalerweise ganzzahlige Vielfache der Frequenz des Grundtons. Die Zusammensetzung und jeweilige Amplitude dieser Wellen ist bestimmend für die Klangfarbe jedes Musikinstruments. Nur die Welle mit der größten Wellenlänge, der Grundton des Signals, hat dabei die Frequenz 440 Hz. Die anderen Wellen, die Obertöne, haben höhere Frequenzen.

An der Fourier-Transformierten des Tonsignals kann man direkt die verschiedenen Frequenzen/Wellenlängen der Wellenzusammensetzung ablesen. Diese Eigenschaft kann man beispielsweise für die automatische Erkennung von Tonhöhen und Musikinstrumenten in einem Tonsignal ausnutzen.

Beispiele

Bearbeiten

Wellenpaket im Zeit- und Frequenzbereich

Bearbeiten

Gegeben sei ein Signalimpuls als Summe zweier Cosinus-Funktionen mit Frequenzen   und   multipliziert mit einer Gauß-Glocke der Breite  :

 
Oben das Wellenpaket   im Zeitbereich, darunter dessen Amplitudenspektrum  
 

Die spezielle Breite wurde gewählt, weil damit der Exponentialterm ohne weiteren Vorfaktor die Fläche 1 s hat. Er hat somit auch die Amplitude 1, sodass der Funktionswert bei   die Summe der Kosinus-Amplituden ist  .

Das obere Teildiagramm zeigt den Funktionsgraphen  . Darunter dargestellt ist das Amplitudenspektrum, also der Betrag der Fourier-Transformierten, die eine komplexwertige Funktion der Frequenz   ist. Es besteht aus vier gaußförmigen Spektrallinien bei   und  . Die Linienbreite beträgt jeweils  . Ein breiteres Wellenpaket würde zu schmaleren Spektrallinien führen. Das Produkt der Breiten im Zeit- und Frequenzbereich ist dimensionslos und beträgt für gaußförmige Hüllkurven stets  , eine Art Unschärferelation. Das Produkt wäre 1 bei Verwendung der Kreisfrequenz.

Falls   eine physikalische Größe ist, was bedeuten dann die Werte des Amplitudenspektrums? Für die Achsbeschriftung der Diagramme wurde vereinfacht angenommen, dass   als Leistungsgröße direkt die Einheit Watt hat,   als sog. Feldgröße also die Einheit √Watt. Damit beträgt die mittlere Leistung der beiden Kosinusfunktionen 0,5·42 bzw. 0,5·22 Watt, zusammen 10 Watt, zu multiplizieren mit der Fläche der quadrierten Hüllkurve. Die Hüllkurve selbst ist normiert, Fläche 1 s. Ihr Quadrat ist wieder eine Gauß-Glocke, hat gleiche Höhe (1), aber halbe Varianz, Fläche 1 s/√2. Damit beträgt die Energie des Wellenpakets etwa 7,07 Joule. Die numerische Integration, siehe den Python-Code auf der Bildbeschreibungsseite, liefert den gleichen Wert, auch für das Energiespektrum (Quadrat des Amplitudenspektrums). Die Werte des Amplitudenspektrums haben folglich die Einheit √Joule pro Hz. Da die Zahlenwerte der Breiten im Zeit- und Frequenzraum (nicht zufällig) gleich sind und die Zahl der Komponenten sich verdoppelt  , halbieren sich die Zahlenwerte der Amplituden (Linienhöhen).

Beispielhafte Berechnung einer Fourier-Transformierten

Bearbeiten

Es soll das Frequenzspektrum einer gedämpften Schwingung mit ausreichend schwacher Dämpfung untersucht werden. Diese kann durch folgende Funktion beschrieben werden:

 

oder in komplexer Schreibweise:

 

Hier ist   die Amplitude und   die Kreisfrequenz der Schwingung,   die Zeit, in der die Amplitude um den Faktor   abfällt, und   die Heaviside-Funktion. Das heißt, die Funktion ist nur für positive Zeiten nicht null.

Man erhält

 

Eigenschaften

Bearbeiten

Linearität

Bearbeiten

Die Fourier-Transformation   ist ein linearer Operator. Das heißt, es gilt  .

Stetigkeit

Bearbeiten

Die Fourier-Transformation ist ein stetiger Operator vom Raum der integrierbaren Funktionen   in den Raum der Funktionen  , die im Unendlichen verschwinden. Mit   ist die Menge der stetigen Funktionen bezeichnet, welche für   verschwinden. Die Tatsache, dass die Fourier-Transformierten im Unendlichen verschwinden, ist auch als Lemma von Riemann-Lebesgue bekannt. Außerdem gilt die Ungleichung

 .

Differentiationsregeln

Bearbeiten

Sei   eine Schwartz-Funktion und   ein Multiindex. Dann gilt

  •   und  .
  •  .

Fixpunkt

Bearbeiten

Die Dichtefunktion

 

mit   der ( -dimensionalen) Gauß’schen Normalverteilung ist ein Fixpunkt der Fourier-Transformation. Das heißt, es gilt für alle   die Gleichung

 .

Insbesondere ist also   eine Eigenfunktion der Fourier-Transformation zum Eigenwert  . Mit Hilfe des Residuensatzes oder mit Hilfe partieller Integration und Lösen einer gewöhnlichen Differentialgleichung kann in diesem Fall das Fourier-Integral   bestimmt werden.

Spiegelsymmetrie

Bearbeiten

Für   gilt für alle   die Gleichung

 .

Äquivalent lässt sich dies auf dem Schwartzraum   als Operatorgleichung

 

schreiben, wobei

 

den Paritätsoperator bezeichnet.

Rücktransformationsformel

Bearbeiten

Sei   eine integrierbare Funktion derart, dass auch   gilt. Dann gilt die Rücktransformation

 

Diese wird auch Fouriersynthese genannt. Auf dem Schwartz-Raum   ist die Fouriertransformation ein Automorphismus.

Faltungstheorem

Bearbeiten

Das Faltungstheorem für die Fourier-Transformation besagt, dass die Faltung zweier Funktionen durch die Fourier-Transformation in ihrem Bildraum in eine Multiplikation reeller Zahlen überführt wird. Für   gilt also

 .

Die Umkehrung des Faltungssatzes besagt[4]

 .

Fourier-Transformation von L2-Funktionen

Bearbeiten

Definition

Bearbeiten

Für eine Funktion   ist die Fouriertransformation mittels eines Dichtheitsargumentes definiert durch

 .

Die Konvergenz ist im Sinne von   zu verstehen und   ist die Kugel um den Ursprung mit Radius  . Für Funktionen   stimmt diese Definition mit der aus dem ersten Abschnitt überein. Da die Fouriertransformation bezüglich des  -Skalarproduktes unitär ist (s. u.) und   in   dicht liegt, folgt, dass die Fouriertransformation ein isometrischer Automorphismus des   ist. Dies ist die Aussage des Satzes von Plancherel.

Hausdorff-Young-Ungleichung

Bearbeiten

Seien   und  . Für   ist   und es gilt

 .

Die Fourier-Transformation   hat also eine Fortsetzung zu einem stetigen Operator  , der durch

 

beschrieben wird. Der Grenzwert ist hier im Sinne von   zu verstehen.

Differentiationsregel

Bearbeiten

Falls die Funktion   schwach differenzierbar ist, gibt es eine Differentiationsregel analog zu denen für Schwartzfunktionen. Sei also   eine k-mal schwach differenzierbare L2-Funktion und   ein Multiindex mit  . Dann gilt

 .

Unitäre Abbildung

Bearbeiten

Die Fourier-Transformation ist bezüglich des komplexen  -Skalarproduktes ein unitärer Operator, das heißt, es gilt

 

Damit liegt das Spektrum der Fourier-Transformation auf der Einheitskreislinie. Im eindimensionalen Fall ( ) bilden ferner die Hermite-Funktionen   im Raum   ein vollständiges Orthonormalsystem von Eigenfunktionen zu den Eigenwerten  .[5]

Fourier-Transformation im Raum der temperierten Distributionen

Bearbeiten

Sei   eine temperierte Distribution, die Fourier-Transformierte   ist für alle   definiert durch

 .

Stattet man den Raum   mit der Schwach-*-Topologie aus, dann ist die Fourier-Transformation eine stetige, bijektive Abbildung auf  . Ihre Umkehrabbildung lautet

 .

Fourier-Transformation von Maßen

Bearbeiten

Die Fourier-Transformation wird allgemein für endliche Borel-Maße auf   definiert:

 

heißt inverse Fourier-Transformierte des Maßes. Die charakteristische Funktion ist dann die inverse Fourier-Transformierte einer Wahrscheinlichkeitsverteilung.

Partielle Differentialgleichungen

Bearbeiten

In der Theorie der partiellen Differentialgleichungen spielt die Fourier-Transformation eine wichtige Rolle. Mit ihrer Hilfe kann man Lösungen bestimmter Differentialgleichungen finden. Die Differentiationsregel und das Faltungstheorem sind dabei von essentieller Bedeutung. Am Beispiel der Wärmeleitungsgleichung wird nun gezeigt, wie man mit der Fourier-Transformation eine partielle Differentialgleichung löst. Das Anfangswertproblem der Wärmegleichung lautet

 

Hierbei bezeichnet   den Laplace-Operator, der nur auf die  -Variablen wirkt. Anwenden der Fourier-Transformation auf beide Gleichungen bezüglich der  -Variablen und Anwenden der Differentiationsregel ergibt

 

Hierbei handelt es sich nun um eine gewöhnliche Differentialgleichung, die die Lösung

 

hat. Daraus folgt   und aufgrund des Faltungstheorems gilt

 

mit   Daraus folgt

 

Das ist die Fundamentallösung der Wärmegleichung. Die Lösung des hier betrachteten Anfangswertproblems hat daher die Darstellung

 

Tabelle wichtiger Fourier-Transformations-Paare

Bearbeiten

In diesem Kapitel folgt eine Zusammenstellung wichtiger Fourier-Transformations-Paare.

Signal Fouriertransformierte
Kreisfrequenz
Fouriertransformierte
Frequenz
Hinweise
     
      Zeitverschiebung
      Frequenzverschiebung
      Frequenzskalierung
      Hier ist   eine natürliche Zahl und g eine Schwartz-Funktion.   bezeichnet die  -te Ableitung von g.

Quadratisch integrierbare Funktionen

Bearbeiten
Signal Fouriertransformierte
Kreisfrequenz
Fouriertransformierte
Frequenz
Hinweise
     
      Die Gaußsche Funktion   ergibt fouriertransformiert wieder dieselbe Funktion. Für die Integrierbarkeit muss   sein.
      Die Rechteckfunktion und die sinc-Funktion ( ).
      Die Rechteckfunktion ist ein idealisierter Tiefpassfilter, und die sinc-Funktion ist die akausale Stoßantwort eines solchen Filters ( ).
        Die FT der um den Ursprung exponentiell abfallenden Funktion ist eine Lorentzkurve.
     

Distributionen

Bearbeiten
Signal Fouriertransformierte
Kreisfrequenz
Fouriertransformierte
Frequenz
Hinweise
     
     
     
     
      Hier ist   eine natürliche Zahl und   die  -te Ableitung der Delta-Distribution.
     
     
        ist der Einheitssprung (Heaviside-Funktion).
      Das Signal heißt Dirac-Kamm.

Siehe auch

Bearbeiten

Literatur

Bearbeiten
Bearbeiten
Commons: Fourier transformation – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

Bearbeiten
  1. Martin Donner: Fouriers Beitrag zur Geschichte der Neuen Medien. In: Humboldt-Universität zu Berlin. 2006, abgerufen am 30. Juli 2021.
  2. Dirk Schulze: Digitale Audiokodierung mit MP3, Varianten und Anwendungsgebiete. In: Technische Universität Dresden. 2008, abgerufen am 30. Juli 2021.
  3. Johannes Klotz: Grundlagen der Fourier-Transformation und deren Anwendung in der Magnetresonanztomographie (MRT). Universität Innsbruck, 30. April 2019, abgerufen am 30. Juli 2021.
  4. Beweis mittels Einsetzen der inversen Fouriertransformierten, z. B. wie in Tilman Butz: Fouriertransformation für Fußgänger. Ausgabe 7, Springer DE, 2011, ISBN 978-3-8348-8295-0, S. 53, Google Books.
  5. Helmut Fischer, Helmut Kaul: Mathematik für Physiker. Band 2: Gewöhnliche und partielle Differentialgleichungen, mathematische Grundlagen der Quantenmechanik. 2. Auflage. B.G. Teubner, Wiesbaden 2004, ISBN 3-519-12080-1, § 12, Abschn. 4.2, S. 300–301.