Symplektisches Vektorfeld
Ein symplektisches Vektorfeld ist im mathematischen Teilgebiet der symplektischen Geometrie (wiederum ein Teilgebiet der Differentialgeometrie) ein spezielles glattes Vektorfeld auf einer symplektischen Mannigfaltigkeit, welches mit dessen symplektischer Form kompatibel ist.
Definition
BearbeitenFür eine symplektische Mannigfaltigkeit ist ein glattes Vektorfeld mit ein symplektisches Vektorfeld. Mit der Cartan-Formel und der Geschlossenheit der symplektischen Form folgt die äquivalente Bedingung der Geschlossenheit der Form .[1][2]
Eigenschaften
Bearbeiten- Linearkombinationen von symplektischen Vektorfeldern sind symplektische Vektorfelder. Für Skalare und symplektische Vektorfelder gilt mit der Linearität des Cartan-Differntials und der Bilinearität der symplektischen Form :
- Lie-Klammern von symplektischen Vektorfeldern sind symplektische Vektorfelder. Für symplektische Vektorfelder ist:
Lie-Algebra der symplektischen Vektorfelder
BearbeitenGemäß der Lemmata bilden die symplektischen Vektorfelder auf einer symplektischen Mannigfaltigkeit einen Vektorraum und mit der Lie-Klammer sogar eine Lie-Algebra, notiert als . Diese ist für geschlossenes die Lie-Algebra der Lie-Gruppe der symplektischen Diffeomorphismen .[3]
Verbindung mit der De-Rham-Kohomologie
BearbeitenPer Definition ist für ein symplektisches Vektorfeld die -Form geschlossen und erzeugt daher ein Element der ersten De-Rham-Kohomologie. Aufgrund der Bilinearität der symplektischen Form ist diese Zuordnung eine lineare Abbildung:
Siehe auch
BearbeitenLiteratur
Bearbeiten- Dusa McDuff und Dietmar Salamon: Introduction to Symplectic Topology. In: Clarendon Press (Hrsg.): Oxford mathematical monographs, Oxford science publications. 1998, ISBN 0-19-851177-9 (englisch).
- Jean-Luc Brylinski: Loop Spaces, Characteristic Classes and Geometric Quantization. In: Birkhäuser Boston (Hrsg.): Modern Birkhäuser Classics. 2007, ISBN 978-0-8176-4730-8 (englisch).