Diskussion:Primzahl/Archiv/1
Dieses Diskussionsarchiv hat die empfohlene Seitengröße erreicht und gilt damit als abgeschlossen. Sein Inhalt sollte nicht mehr verändert werden (ausgenommen Kleinbearbeitungen wie Link- und Vorlagenfixe). Verwende für die Archivierung von Diskussionsbeiträgen bitte das aktuelle Archiv und benutze bitte für aktuelle Diskussionen die aktuelle Diskussionsseite.
Um einen Abschnitt dieser Seite zu verlinken, klicke im Inhaltsverzeichnis auf den Abschnitt und kopiere dann Seitenname und Abschnittsüberschrift aus der Adresszeile deines Browsers, beispielsweise
[[Diskussion:Primzahl/Archiv/1#Abschnittsüberschrift]] https://de.wikipedia.org/wiki/Diskussion:Primzahl/Archiv/1#Abschnittsüberschrift |
Alte Diskussion
Eine Zahl, die nicht Primzahl ist, nennt man zusammengesetzte Zahl.
Das ist nicht ganz korrekt. 0 und 1 sind weder Primzahl noch zusammengesetzt. Das sollte man noch irgendwie reinbringen. --Berni 22:32, 17. Dez 2003 (CET)
- Danke fuer den Hinweis, das hatte ich uebersehen. --SirJective 11:41, 18. Dez 2003 (CET)
- Die 0 gehört allerdings überhaupt nicht zum multiplikativen Monoid der ganzen Zahlen, dessen Erzeugende die Primzahlen gerade sind. Zur 0 stellt sich m.E. von vorneherein gar nicht die Frage "prim oder zusammengesetzt". -- JFKCom 20:52, 13. Jul 2005 (CEST)
- Abgesehen davon, dass Du an eine anderthalb Jahre alte Diskussion anknüpfst, sind Primzahlen auch für den Ring der ganzen Zahlen wichtig, und in vieler Hinsicht verhält sich 0 wie eine Primzahl (Erzeuger eines Primideals).--Gunther 21:08, 13. Jul 2005 (CEST)
- Die Alt-Diskussion kannte ich nicht, die will dann auch gar nicht weiter aufwärmen. Ich habe nur mit der bestehenden Erstdefinition der Primheit ein Erstleser-Problem: Sie definiert prim u. zusammengesetzt jeweils für "nat. Zahlen > 1". Die folgende Bemerkung zu 0 u. 1 danach wirkt auf mich deshalb so künstlich, weil diese beiden Zahlen eben davor gerade ausgeschlossen wurden. Ich fände diese etwas subtile Betrachtung von 0 u. 1 eher im theoretischer angehauchten Teil weiter unten besser untergebracht. Der ursprüngliche Einwand ist ja m.E. durch die generelle Einschränkung auf >= 2 bereits "geheilt". -- JFKCom 23:03, 13. Jul 2005 (CEST)
- Der Beitrag von SirJective, auf den Du geantwortet hast, stammt von Dezember 2003. Aktuelle Diskussionen findest Du fast immer unten. Bei dem Nachsatz (im Abschnitt "Formale Definition") geht es ja um den Begriff "zusammengesetzte Zahl", und da muss man dann 0 und 1 gesondert erwähnen.--Gunther 23:09, 13. Jul 2005 (CEST)
Ich habe die alte Version wieder hergestellt, da die Änderungen am Sieb des Erasblabla unsinn sind. In der Praxis wird man dies so realisieren (werd ich gleich in den Artikel schreiben), aber am Anfang weiß man ja eigentlich noch nicht, daß 2 eine Primzahl ist. Analog könnte man auch die ersten 100 Primzahlen als bekannt voraussetzen und würde letztlich nichts anderes tun als ab da anfangen zu prüfen. Die Antwort zur Frage, warum 1 keine Primzahl ist habe ich aus den unten besprochenen Gründen gelöscht. --Coma 18:38, 27. Feb 2003 (CET)
Halo Coma, zu deiner Frage zu den Primzahlen: Die Zahl ist nur durch sich selbst teilbar. Sie durch 1 zu teilen ist das gleiche, wie sie durch sich selbst zu teilen. Die Bediengung für eine Primzahl ist also nicht erfüllt! bei weiteren Fragen --> Diskusion:Primzahlen DaB.
Wer sagt denn, daß "durch 1 teilbar sein" und "durch sich selbst teilbar sein" nicht das gleiche sein darf? Die Definition verlangt nur das beides zu gleich geht. Wenn es ein und das selbe ist, geht auch beides zu gleich... darum würd ich den punkt bei "warum 1 keine primzahl ist" löschen. das ist absoluter humbug. --Coma 13:36, 25. Feb 2003 (CET)
Jede positive ganze Zahl lässts sich eindeutig als Produkt von Primzahlen darstellen (eindeutige Primfaktorzerlegung). So besteht z.B. die Zahl 1050 aus den Primfaktoren 2 · 3 · 5 · 5 · 7.
Wenn jede ganze Zah mit einem Produkt aus primzahlen dargestellt werden kann, wie stellt man dann zum Beispiel die "7" oder die "11" dar? 7*1 geht ja nicht, da die "1" ja keine Primzahl ist, oder?
- Soweit ich weiß ist das Produkt aus einer Zahl als die Zahl selbst und das Produkt aus 0 Faktoren als 1 definiert. --Caramdir 18:00, 28. Aug 2003 (CEST)
- Ja, diese Festlegung ist üblich. Hab den Artikel Multiplikation entsprechend erweitert. Der Artikel über Addition sollte dann auch noch erweitert werden um Summen mit 1 oder 0 Summanden. In de.sci.mathematik war vor kurzem eine Diskussion über genau dieses Thema. Sollte man diese Festlegungen im Artikel noch begründen? --SirJective 18:52, 29. Aug 2003 (CEST)
Diskussion zur gelöschten Liste der Primzahlen von 1 - 10000
Ich frage mich, ob wir solche Listen wirklich brauchen, und wenn ja, ob die wirklich so lang sein müssen? Es gibt eine gute "Suchmaschiene" die alle möglichen Listen von Zahlen ausspuckt:
--Coma 18:57, 1. Mär 2003 (CET)
- Ich find so eine Liste recht unerotisch, ein Artikel über das Finden von Primzahlen mit einem Beispiel (kann gern 1-1000 sein) ist doch viel besser. -- TomK32 19:35, 1. Mär 2003 (CET)
Die Frage ist nicht, ob man etwas unerotisch findet oder nicht, sondern ob ein Wikipedia Artikel abgerufen wird oder nicht. Wartet doch einfach 5 Jahre ab. Wenn dann die Liste weniger als 20 mal abgerufen wurde, bringt sie wahrscheinlich den Wikipedia Lesern nichts. Benutzer:rho
- Nein, die Frage ist, ob so etwas in die Wikipedia gehört oder nicht. Das entscheidet sich nicht daran, wie oft die Seite aufgerufen wird. Wir wollen ja nicht das ganze Web überfüssig machen, sondern eine Enzyklopädie aufbauen. Und selbst wenn wir danach entscheiden, wie oft die Seite aufgerufen wird. Das kann ja auch daran liegen, das sie umstritten ist.
- Solche Listen von Zahlen gehören meiner Meinung nach nicht hier hin. Stattdessen kann man auch einen Link auf eine entsprechende Website angeben, die solche Zahlen bereithält. Davon hat der Nutzer in aller Regel wohl auch mehr. Denn die Liste kann viel länger sein oder spezielle Probleme werden detailierter erläutert. --Coma 20:08, 2. Mär 2003 (CET)
Ich bin dafür, die Primzahlen bis 101 in Primzahl zu übernehmen und dann weg mit diesem Artikel. Es ist nichts dagegen einzuwenden, kurze Listen als Beispiele zu verwenden, z.B. Primzahlenpaare wie 9857/9859 oder meinetwegen die größten bekannten Primzahlen (nicht unbedingt in voller Dezimalschreibweise), aber die Auflistung hier hat (ebenso wie z.B. die Auflistung des gesamten menschlichen Erbgutes) keinen enzyklopädischen Informationsgehalt - für sowas gibt es Programme und Datenbanken -- JakobVoss 14:25, 8. Apr 2003 (CEST)
- FULL ACK, Jakob! Flups 14:40, 8. Apr 2003 (CEST)
- Bin auch für löschen. Evtl. Ersetzen der Liste durch ein Java-applet zur Primzahlerzeugung? -- Schewek 17:29, 10. Apr 2003 (CEST)
- löschen ja! Java-Applet nein! höchstens externer Link auf entsprechendes Applet! Ich lösch so gerne darf ich? --Coma 17:40, 10. Apr 2003 (CEST)
- Nur zu! --nerd 17:45, 10. Apr 2003 (CEST)
falls sie mal jemand braucht, hier die liste, die diskussion wird wohl besser nicht gelöscht... --Coma 17:59, 10. Apr 2003 (CEST)
Der Übersicht halber habe ich trotzdem mal Deine Primzahlliste gelöscht und durch 2 externe Links ersetzt (für die ich die volle verantwortung übernehme):
- Die Primzahlen bis 2 Millionen als Textdatei (ca. 1,2MB)[1]
- Die Primzahlen bis 20 Millionen als Textdatei (ca. 11,3MB)[2]
--Modran 22:44, 24. Sep 2004 (CEST)
Primfaktorzerlegung
Der Artikel Primfaktorzerlegung redirected hierher, ich kann hier jedoch keine Darstellung der Zerlegung ganzer Zahlen in Primzahlen finden (auch die kanonische Darstellung). Falls ich mal Zeit hab, baue ich das ein, waere aber nicht boese, wenn mir jemand zuvorkaeme. Ebenso muesste der Begriff zusammengesetzte Zahlen erklaert werden. --SirJective 13:56, 3. Dez 2003 (CET)
- Dann bau dass doch besser unter Primfaktorzerlegung ein und verweise von hier dorthin... --Coma 15:40, 3. Dez 2003 (CET)
Babbages Vermutung
Ich weiß zwar nicht mehr wo ich es gelesen habe, aber es gibt die Vermutung von Charles Babbage, daß wenn p eine Primzahl ist, das folgendes gilt:
Irgendwie hat p3-3 auch noch irgendwie damit zu tun. --Arbol01 13:36, 30. Apr 2004 (CEST)
Ach ja, für die Primzahlen 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 43, 47 und 53 trifft diese Vermutung zu. Eine Pseudoprimzahl tritt bis 53 auch nicht auf. Mal sehen. --Arbol01 14:23, 30. Apr 2004 (CEST)
Ich habe jetzt im "The new Book of the Prime Number Records" folgende Formel (wieder(gefunden):
Allerdings nicht unter dem Namen Babbage, sondern mehr oder weniger unter "The Property of Wolstenholme". --Arbol01 23:21, 10. Mai 2004 (CEST)
Beweise für die Existenz unendlich vieler Primzahlen
Ich muß doch mal schreiben, das Du Benutzer:Coma, den entsprechenden Mathematikern unrecht tust, wenn Du ihnen vorwirfst, man könne eine Reihe von beweisen immer leicht konstruieren. Wenn du Dir die Beweise nämlich mal anschaust (für die nuch nicht ausgeführten mußt Du allerdings das Buch "The new Prime Records" von Paolo Ribenboim lesen, und die sind dann wirklich knackig) wirst Du feststellen, das sich hinter einer ganzen Menge Perlen befinden.
- Da hast du was falsch verstanden. Konstruhieren kann man eine Reihe von Beweisen nat. nur dann, wenn man schon einen hat! Man fügt einfach ein paar an sich überflüssige, d.h. nicht notwendige aber dennoch nicht falsch Schritte ein. Deshalb hat mich die Formulierung gestört. Zumal man den Begriff "Reihe" in einem mathematischen Artikel auch noch missverstehen kann, nämlich genau in dem von mir vorgegebenen Sinne. Statt einen nicht notwendigen, kann ich ja beliebig viele nicht notwendige Schritte in einen Beweis einfügen. Formal betrachtet sind das dann alles unterschiedliche Beweise. Mal ganz abgesehen davon, dass es schwer ist zu definieren wann Beweise identisch sind. Das ist mehr ein Gefühl. --Coma 19:30, 4. Mai 2004 (CEST)
Der Satz von Euklid ist übrigens nicht nur ein Satz, sondern ein echter Beweis. Ein Beweis durch Widerspruch, um genau zu sein. --Arbol01 17:53, 3. Mai 2004 (CEST)
- Dem stimme ich zu. Der "Satz von Euklid" ist immer mit einem bestimmten Beweis verknuepft, der selbst als der Satz bezeichnet wird. --SirJective 11:49, 4. Mai 2004 (CEST)
- Prinzipiell unterscheidet man immer eine Aussage (also einen Satz, eine Vermutung) von einem Beweis, der eine Vermutung zu einem Satz werden lässt. Wenn das in diesem speziellen Fall im Sprachgebrauch anders sein sollte (was ich bezweifle) sollte man das erwähnen, denn sonst trägt die jetztige und alte Version nicht unbedingt dazu bei, dass wir hier irgendwann mal eine stabile Version des Artikels hinbekommen. Vielleicht mag das im Schulunterricht (und manchmal auch an der Uni) nicht so genau auseinander gehalten werden, weil man den Satz von Euklid immer mit dem Beweis von Euklid serviert bekommt, aber genau genommen ist falsch. Wenn ich den Satz von Euklid mit einem anderen als dem Beweis von Euklid beweise, ist es ja immernoch die selbe Aussage und heißt dann immernoch Satz von Euklid. Wenn man Satz und Beweis vermengt, führt dies immer zur Verwirrung. --Coma 19:30, 4. Mai 2004 (CEST)
- Hmm... Ein bisschen googlen bringt mich zu der Erkenntnis, dass es einige "Saetze von Euklid" gibt:
- Satz von Euklid ueber Primzahlen
- Kathetensatz oder Satz des Euklid ([3])
- "Erster Satz von Euklid": fuer Primzahl p gilt: p|ab -> p|a oder p|b ([4]) (Punkt 1 wird dort "Zweiter Satz von Euklid" genannt)
- "Satz von Euklid": Wenn 2n-1 eine Primzahl ist, dann ist (2n-1)*(2n-1) vollkommen. ([5])
- Der Primzahl-Satz wird in den Texten, die ich gefunden habe, stets nur mit Euklids Beweis angegeben. Aber du hast recht, Coma, als Satz sollte nur die Aussage bezeichnet werden, nicht ihr Beweis. Was machen wir da nun? --SirJective 13:26, 5. Mai 2004 (CEST)
- Mir ist das ja auch schon aufgefallen. Es heißt "Satz von Euklid" und es heißt "Satz von Thales". Beide heissen sie Sätze, aber beide sind sie etwas völlig unteschiedliches. Das der "Satz von Euklid" ein Beweis ist, steht dabei ausser Frage. Soll man jetzt den "Satz von Euklid" in Beweis von Euklid" umbebennen.
- Übrigens, die anderen Beweise, bezüglich der unendlichen Anzahl von Primzahlen sind durchaus nicht Variationen des Beweises Von Euklid. Insbesondere ist es der Beweis von Goldbach nicht. --Arbol01 13:43, 5. Mai 2004 (CEST)
- "Prinzipiell unterscheidet man immer eine Aussage (also einen Satz, eine Vermutung) von einem Beweis, der eine Vermutung zu einem Satz werden lässt."
- Huch? Was ist denn jetzt der "Satz" - die Vermutung oder der Beweis? Natürlich letzteres! Ein Satz (Mathematik) ist eine bewiesene Vermutung. Wo ist das Problem? --Modran 22:58, 24. Sep 2004 (CEST)
größte Primzahl und unendlich viele Primzahlen
Hallo Arb01,
Du schreibst
- Der Satz von Euklid besagt, dass es keine größte Primzahl gibt. Dies ist identisch mit der Aussage, dass es unendlich viele Primzahlen gibt.
Im Allgemeinen kann man so nicht folgern. Gegenbeispiel: Die Aussage "Es gibt keine größte durch 10 teilbare Primzahl" impliziert NICHT "Es gibt unendlich viele durch 10 teilbare Primzahlen". Richtig ist vielmehr: Es gibt überhaupt keine durch 10 teilbare Primzahlen.
Obiges Folgerungs-Prinzip kann man so retten:
- Es gibt mindestens eine Primzahl UND es gibt keine größte Primzahl <==> Es gibt unendlich viele Primzahlen.
tsor 20:38, 3. Mai 2004 (CEST)
Hallo Tsor,
"Du schreibst
Der Satz von Euklid besagt, dass es keine größte Primzahl gibt. Dies ist identisch mit der Aussage, dass es unendlich viele Primzahlen gibt. "
Nein, das habe ich nicht geschrieben. Ich habe es nur, wie eine Menge anderer Leute durchgehen lassen.
"::Es gibt mindestens eine Primzahl UND es gibt keine größte Primzahl <==> Es gibt unendlich viele Primzahlen."
An dieser, an und für sich richtigen Folgerung ist ein Haken. Wenn es keine Primzahl gibt, warum gibt es dann diesen Artikel über Primzahlen. Keiner bezweifelt die Existenz von Primzahlen. Die Frage, bis spätistens Euklid, war ob es endlich viele oder unendlich viele Primzahlen gibt. Und so ist die obige, zugegebenerweise etwas unglücklich formulierte Aussage korrekt. --Arbol01 21:23, 3. Mai 2004 (CEST)
- Diese - auch in das Sieb des Eratosthenes eingegangene - Formulierung wurde uebrigens von Coma gewaehlt. Unter der Voraussetzung, dass die Existenz einer Primzahl bekannt ist, ist sie richtig. Arbols Neuformulierung ist mMn sogar besser als der Abschnitt, wie er vor Comas Aenderung war. --SirJective 12:23, 4. Mai 2004 (CEST)
- "Wenn es keine Primzahl gibt, warum gibt es dann diesen Artikel über Primzahlen."
- Bei dieser Frage übersiehst Du einen wichtigen Aspekt der Mathematik: Wenn Mathematiker Aussagen über ein Objekt machen, dann folgt daraus nicht, daß es dieses Objekt auch wirklich gibt. Und dies gilt nicht nur für Mathematiker, siehe Nihilartikel. Der Beweis dafür, daß es mindestens eine Primzahl gibt, muß also geführt werden - was allerdings trivial ist. ;) --Modran 23:07, 24. Sep 2004 (CEST)
Fermat's kleiner Satz kein Primzahltest an sich
Muß die Legende, das der kleine Fermat ein Primzahltest auf Wahrscheinlichkeit ist, auf Gedeih und verderb aufrecht erhalten werden? In den meisten Büchern, mal Abgesehen von "Zahlentheorie für Anfänger" das sein Geld nicht wert ist, wird der kleine Fermat, aus gutem Grund, nicht mal erwähnt (er ist ewig langsam). All diese Primzahltests auf Wahrscheinlichkeit umgehen den kleinen Fermat vollständig, und abeiten mit Legendre- und Jacob-Symbolen und anderen Methoden. Man kann mit dem kleinen Fermat einen wasserdichten Primzahltest basteln, den ich allerdings hauptsächlich als Pseudoprimzahl-Finder benutzt habe. --Arbol01 00:12, 18. Mai 2004 (CEST)
Link auf Primzahltest
Ich fände es praktisch, wenn der Link beim ersten Auftreten von Primzahltest gesetzt wird -- hinterher braucht man nicht unbedingt noch einen. Kommt halt drauf an, wie man den Artikel liest: nach dem Inhaltsverzeichnis käme man gleich auf das Kapitel, das eigentlich nur aus dem Verweis besteht, wenn man den Artikel von oben nach unten liest, begegnet man zuerst der Erwähnung von Primzahltests, die im Moment nicht verlinkt ist... gibt's da nicht noch ne bessere Lösung? --Pinguin.tk 11:11, 18. Mai 2004 (CEST)
Ich habe den Punkt, der die Primzahltests betrifft, nach oben (über die Primzahleigenschaften) verschoben. Damit tritt nun der Link "Primzahltest" als erstes auf. --Arbol01 11:35, 18. Mai 2004 (CEST)
neues
Ben Green von der der University of British Columbia in Vancouver und Terence Tao von der Univerity of California in Los Angeles konnten beweisen das es unendlich viele Primzahlen gibt die einen gleichen abstand voneinander haben. Z.B. 6,8,10,... hat immer den abstand 2 . Es handelt sich um einen existenbeweis er enthält keine anweisung wie man eine dieser zahlen berechnen kann. Übrigen die längste bekanntes reihe beinhaltet 22 zahlen(11 410 337 850 553, 16 019 436 544 753,usw.) quelle geo 10/2004 seite 206 Luk 18:13, 16. Sep 2004 (CEST)
- Da kommt der gute Ben Green und Terence Tao ca 100 Jahre zu spät. Das hat schon Dirichlet bewiesen, auch als Satz von Dirichlet bekannt.
- Das ist so nicht richtig: Der Satz von Dirichlet besagt, dass es für teilerfremde natürliche Zahlen a und b unendlich viele Primzahlen der Form k*a + b gibt. All Primzahlen dieser Form haben voneinander jeweils einen Abstand, der ein Vielfaches von a ist. Daraus folgt aber nicht, dass es ein a und ein b gibt, so dass alle Zahlen der Form k*a + b Primzahlen sind - und so verstehe ich die Behauptung. Leider hab ich das genannte Geo-Magazin nicht, um zu prüfen, ob ich das richtig verstanden habe. --SirJective 21:42, 15. Okt 2004 (CEST)
- Das paper von Green und Tao wird leider von verschiedenen Medien (darunter auch GEO und NZZ) falsch zitiert. Unendlich lange arithmetische Folgen von Primzahlen (also Folgen, in denen aufeinanderfolgende Einträge immer den selben Abstand haben), kann es natürlich nicht geben. Wenn man mit einer Zahl z>1 beginnt, und immer wieder einen fixen Abstand d>0 hinzuzählt, erhält man z, z+d, z+2d, z+3d, etc. Spätestens die Zahl z+zd ist dann keine Primzahl mehr.
- Was Green und Tao bewiesen haben: Es gibt beliebig lange arithmetische Folgen von Primzahlen. Also zum Beispiel eine arithmetische Folge der Länge 100. Und auch eine der Länge 1000. Und so weiter.
- (Daraus folgt natürlich leicht, dass es zum Beispiel unendlich viele arithmetische Folgen der Länge 100 gibt.)
- Nachzulesen unter [6]
- Wuzel 01:53, 17. Okt 2004 (CEST)
"Siehe auch" entrümpeln
Derzeitiger Inhalt von "Siehe auch":
- Primzahlsatz: raus, steht schon oben
- Faktorisierung: ok
- Ungelöste Probleme der Mathematik: was hat das direkt mit Primzahlen zu tun? Dass dort nur ein paar Probleme der elementaren Zahlentheorie aufgelistet sind, ist kein Grund.
- Sieb des Eratosthenes: ok
- Zeisel-Zahl: unwichtig, raus
- Liste besonderer Zahlen: Bezug?
- Portal:Mathematikmatik: ok
- Pseudoprimzahlen: ok, vielleicht aber besser unter "Verallgemeinerungen"
- Giuga-Zahl: besser unter "Verallgemeinerungen"
- Primzahllücke: hat schon einen eigenen Abschnitt, der mit "Verteilung" vereinigt werden sollte. Arbol, warum soll das stehenbleiben?
- Eisenstein-Zahlen: sehe keinen direkten Bezug
- Gauß'sche Zahlen: sollte in einen Abschnitt über Primzahlen der Formen 4k+1 und 4k+3
Kommentare, Einsprüche?--Gunther 14:41, 2. Mai 2005 (CEST)
- Ich habe keine Problem mit der Siehe auch-Entrümpelung. Pseudoprimzahl, Carmichael-Zahl und Giuga-Zahl laufen schon unter Eigenschaften (der Primzahlen).
- Primzahlen der Form 4k+/-1 und 6k+/-1 laufen ebenfalls unter Eigenschaften. Demnach würden die Gaußschen Zahlen dorthin gehören.
- Sieb des Erathostenes ist schon in dem Abschnitt Primzahltest abgehandelt. --Arbol01 15:37, 2. Mai 2005 (CEST)
Hallo Gunther,
was hat Dir denn an der Möbius-Funktion Missfallen? --Arbol01 18:33, 14. Mai 2005 (CEST)
- Es ist nicht gerade eine "Eigenschaft" von Primzahlen, dass ist. Das ist eine Eigenschaft der Möbius-Funktion, die zum Verständnis des Begriffes "Primzahl" nichts beiträgt.--Gunther 01:46, 15. Mai 2005 (CEST)
Warum ist 1 keine Primzahl
Alte Version zur Frage "Warum ist 1 keine Primzahl wieder hergestellt"
Der neue Text ist mathematisch durchaus korrekt. Ich bin dennoch der Meinung, dass man dem Leser die Auswahl an Antworten überlassen sollte. Die oben genannte Frage, impliziert nämlich die Frage, warum Definiert man dies und das so, und nicht anderst. Man könnte doch einfach sagen, eine Primzahl ist eine natürliche Zahl die maximal 2 natürliche Teiler hat, dann ist 1 auch eine. Geht man auf weitere Ringe über, so stellt sich heraus, dass die angegebene Definition eigentlich die Definition eines irreduziblen Elements ist, und garnicht die eines Primelements. Stenggenommen müsste man hier eigentlich die Definition eines Primelements angeben. Aber das verwirrt Leute, die sich keine Gedanken über Verallgemeinerungen machen (wollen). Da Primzahl eine der am häufigsten aufgesuchten mathematischen Seiten in der Wikipedia ist, sollte man hier vorsichtig sein.--Berni 14:21, 29. Jan 2004 (CET)
- Jede zahl hat unendlich viele Teiler, wenn diese nicht unterschiedlich sein müssen. So ist
- 1 = 1*1*1*1...
- 2 = 2*1*1*1*1...
- 3 = 3*1*1*1*1*1...
- 4 = 2*2*1*1*1...
- 5 = 5*1*1*1...
- 6 = 2*3*1*1*1... etc.
- Wenn die 1 eine Primzahl WÄRE, dann würde folgende Definition gelten: Eine Zahl ist genau DANN eine Primzahl, wenn ihre Zerlegung außer sich selbst und der 1 keine anderen Zahlen enthält.
- Das klingt einfach und logisch. Mathematik untersucht aber keine Naturgesetze, sondern formale Systeme, und davon gibt es unendlich viele, die allesamt völlig gleichberechtigt sind. man kann die 1 als primzahl definieren oder auch nicht - es geht nur darum, welches der beiden Systeme am zweckmäßigsten ist. --Modran 22:53, 24. Sep 2004 (CEST)
Warum ist die 1 keine Primzahl - Sieb des Eratosthenes
Hab folgenden Absatz aus dem Artikel entfernt:
- Eine komplexere Antwort bietet das Sieb des Eratosthenes. Dieses ist ein Verfahren zum heraussieben von Nichtprimzahlen. Alle Zahlen sind zu Anfang Primzahlen. Die erste Zahl wird als Primzahl markiert, und daraufhin alle Vielfachen der Primzahl ausgestrichen. Danach wird die erste nicht ausgestrichene Zahl als Primzahl markiert, und so weiter. Standardmässig beginnt man mit der 2, denn würde man mit der 1 als Primzahl beginnen, dann würde keine nicht ausgestrichene Primzahl mehr übrig bleiben.
Dies ist fuer mich keine Antwort auf die Frage. Das Siebverfahren funktioniert, weil die 1 keine Primzahl ist, nicht umgekehrt. Waere die 1 eine Primzahl, waere der Siebalgorithmus etwas anders. --SirJective 11:49, 4. Mai 2004 (CEST)
- Das das Siebverfahren nur deswegen funktioniert, weil die 1 keine Primzahl ist, stellt doch keiner in Frage. Die Argumentation soll ja gerade darauf zielen, das die 1 keine Primzahl sein kann, weil sonst das Siebverfahren nicht funktionieren kann. Es soll die "Daumenschrauben" für "1 ist keine Primzahl"-Zweifler etwas enger schrauben. Mehr nicht. --Arbol01 12:02, 4. Mai 2004 (CEST)
- Dieses Siebverfahren funktioniert, wenn 1 keine Primzahl ist. Wenn aber 1 eine Primzahl ist, funktioniert ein anderes Siebverfahren. Dieser Algorithmus ist mMn kein Argument fuer oder gegen die Primalitaet der 1. Ebensowenig wie "ohne die 0 gibt es kein neutrales Element der Addition in den natuerlichen Zahlen" fuer sich genommen kein Argument dafuer ist, die 0 zu den natuerlichen Zahlen hinzuzunehmen. --SirJective 12:23, 4. Mai 2004 (CEST)
Definition des Begriffs Primzahl
Wenn ich die alte Einleitung
- Eine Primzahl p ist eine natürliche Zahl, die genau zwei natürliche Teiler hat - nämlich 1 und die Zahl p selbst. Diese Definition impliziert, dass die beiden Teiler voneinander verschieden sind (durch das Wort „genau“).
mit der neuen vergleiche
- Eine Primzahl p ist eine natürliche Zahl, die genau zwei natürliche Teiler hat. Nämlich die 1 und die Zahl p für die 1<p gilt.
faellt mir auf, dass die Bedingung p>1 wieder drin ist, die durch die umstaendliche alte Formulierung vermieden werden sollte. Wenn wir diese Bedingung wieder drin haben, koennen wir gleich schreiben
- Eine Primzahl p ist eine natürliche Zahl größer als 1, die nur die Zahlen 1 und p als positive Teiler hat.
--SirJective 12:23, 4. Mai 2004 (CEST)
- Auch ich halte letzendlich diese Formulierung "Eine Primzahl p ist eine natürliche Zahl größer als 1, die nur die Zahlen 1 und p als positive Teiler hat." für besser.
- Das Problem ist ja immer, das irgendeinem Menschen diese Formulierung wieder nicht passt (Siehe Coma). --Arbol01 12:52, 4. Mai 2004 (CEST)
- Ich hab jetzt beide verbreiteten Definitionen reingeschrieben. Ist es recht, dass ich die Liste der Primzahlen und der zusammengesetzten Zahlen reingeschrieben habe? --SirJective 14:23, 4. Mai 2004 (CEST)
Die "auch für Laien geeignete" Definition
- Eine Primzahl ist eine (positive) ganze Zahl, die nur durch die Zahl 1 und sich selbst (ganzzahlig) teilbar ist.
ist leider falsch, und das auch nach meinem Einschub, dass die Zahl größer als 1 sein muss:
- Eine Primzahl ist eine ganze Zahl, die größer als 1 ist und nur durch die Zahl 1 und sich selbst (ganzzahlig) teilbar ist.
Denn ganzzahlig ist jede ganze Zahl auch durch -1 teilbar... Wolfgang1018, meinst du, wir finden irgendwann eine einfache richtige Definition? --SirJective 12:07, 22. Sep 2004 (CEST)
Deine Einwände, SirJective, sind berechtigt! Danke für die Berichtigung und den Hinweis. Weil hier schon lange um eine einfache, aber korrekte Definition für die Einleitung gerungen wird, habe ich nochmals mit mir gerungen und mir eine zwar etwas längere, aber dennoch einfache, gut nachvollziehbare Formulierung überlegt und diese auch gleich in dem anschließenden Beispiel und Gegenbeispiel berücksichtigt. Ich hoffe, wir sind damit einer einfachen richtigen Definition näher oder sogar ganz nahe gekommen. Wolfgang1018 13:12, 22. Sep 2004 (CEST)
- Sollte im ersten Satz nicht "ganze Zahl" durch "natürlich Zahl" ersetzt werden? -- tsor 19:23, 24. Sep 2004 (CEST)
- Mmmmhhhhh, würde ich irgendwie auch sagen. Obwohl die ganzen Zahlen nicht im Wiederspruch stehen. (-2) z.B. ist durch vier Zahlen teilbar, nämlich -2, -1, 1 und 2. --Arbol01 20:04, 24. Sep 2004 (CEST)
- Von negativen Promzahlen habe ich auch noch nichts gehört oder gelesen. Bei der "Formellen Definition" ein paar Zeilen ist auch von "natürlichen Zahlen" die Rede. Vielleicht sollten wir hier noch ein paar Meinungen abwarten bevor wir die mühsam erarbeitete Formulierung abändern. -- tsor 21:13, 24. Sep 2004 (CEST)
- Ich habe jetzt das erste ganze Zahl durch natürliche Zahl ersetzt. Ehrlich gesagt finde ich die ganze Definition zum kringeln. Ob die wirklich einfacher zu verstehen ist, wage ich zu bezweifeln. Aber sei es drum. --Arbol01 22:22, 24. Sep 2004 (CEST)
- "Eine Primzahl ist eine natürliche Zahl, die selbst größer als 1 ist und von allen ganzen Zahlen größer als Null nur durch die Zahl 1 und sich selbst (ganzzahlig) teilbar ist, d.h. dass das Teilen (die Division) nur bei diesen beiden Fällen genau aufgeht und kein Rest oder Bruchteil verbleibt."
- Ist das wirklich Euer Ernst? ;)
- Über 50 Worte, um simple Primzahlen zu definieren? Das geht auf keinen Fall! Ich überleg mir mal was... ;) --Modran 23:16, 24. Sep 2004 (CEST)
- Der Unterschied zwischen "ganze Zahl größer als 1" und "natürliche Zahl größer als 1" ist eher gering ;) Wolfgang, welcher Begriff sollte Schülern eher bekannt sein, ganze Zahl oder natürliche Zahl? Oder kennen die nur "Zahl"?
- Die -2 entspricht nicht der Definition einer Primzahl, aber die Begriffe "Primzahl" und "zusammengesetzte Zahl" sind auch nur für natürliche Zahlen definiert. Die formale Definition sollte also unangetastet bleiben.
- Die Einleitung ist jetzt immerhin richtig. Vielleicht sollte man die Liste der ersten Primzahlen und zusammengesetzten Zahlen mit an den Anfang verlegen, ist vielleicht zur Verdeutlichung hilfreich? --SirJective 23:20, 24. Sep 2004 (CEST)
- Was spricht denn gegen: "Eine (natürliche) Zahl ist (genau dann) prim, wenn sie mindestens zwei verschiedene (natürliche) Teiler aufweist"?
- Da dann die 1 ebenfalls Primzahl ist, würde man gegen die Eindeutigkeit einer Primfaktorzerlegung verstoßen. Das zieht einen Rattenschwanz von Sonderbetrachtungen in Beweisen nach sich. Die Definition "eine Primzahl ist eine natürliche Zahl mit genau zwei Teilern" ist absolut üblich und für jeden Schüler verständlich. Warum soll man also künstlich das ganze aufbauschen?--herw, + 18:41, 28. Nov 2004 (CET)
- Wobei man wieder darauf hinweisen müßte, daß in diesem Fall 0 nicht zu den natürlichen Zahlen gehört - und wir haben wieder dasselbe problem, nur auf einer anderen Ebene...
- Letztlich ist die Mathematik keine Naturwisenschaft. Sie wählt beliebige Axiome und Definitionen aus einer unendlichen Fülle vom Möglichkeiten aus. Deshalb muß sie immer wieder zeigen, daß die wenigen von ihr ausgewählten Systeme eine praktische Relevanz haben. Ein System, in dem die 1 eine primzahl ist, ist viel trivialer als eins, in dem sie es nicht ist, denn in diesem System ist 1 die EINZIGE Primzahl!
- Ein solches System lohnt nicht der weiteren Untersuchung, es gibt darin nichts mehr zu entdecken! Volkswirtschaftlich gesprochen kann man dafür keine Fördergelder bekommen, weil es nichts zu untersuchen gibt. Die Primzahlen (ohne 1) hingegen haben - anders als noch vor 100 jahren - plötzlich eine enorme wirtschaftliche Bedeutung (eben weil der simple Verzicht auf die 1 ein enorm Komplexes System erzeugt)! Ich bin zwar auch ein Freund von freier Information wie in Wiki, aber manche persönliche Daten DARF ich einfach nicht unverschlüsselt über das Inet schicken - und die Primzahlen sind derzeit unsere einzige Möglichkeit, eine sichere Verschlüsselung zur Verfügung zu stellen. --Modran 23:43, 24. Sep 2004 (CEST)
- Was spricht denn gegen: "Eine (natürliche) Zahl ist (genau dann) prim, wenn sie mindestens zwei verschiedene (natürliche) Teiler aufweist"?
- Dagegen spricht, dass 4 eine natürliche Zahl ist, die mindestens zwei verschiedene natürliche Teiler hat. ;)
- Ob die 0 zu den natürlichen Zahlen gehört oder nicht ist für Primzahlen ausnahmsweise völlig irrelevant, da es sowieso nur um "natürliche Zahlen größer als 1" geht und die 0 sowieso nicht Teiler einer solchen Zahl sein kann.
- Ja, Mathematik ist sehr willkürlich bei der Wahl der Axiome und Definitionen, trotzdem sehe ich nicht die Notwendigkeit einer praktischen Relevanz. Ich denke, es geht an dieser Stelle der Diskussion nicht darum, ob die 1 eine Primzahl ist (dafür gibt's nen anderen Abschnitt hier), sondern um eine möglichst verständliche Formulierung des allgemein anerkannten Primzahlbegriffs. --SirJective 00:38, 25. Sep 2004 (CEST)
- Ups ;) ja, ok. Ich hab trotzdem eine Ergänzung gemacht, was hälst Du davon? --Modran 00:45, 25. Sep 2004 (CEST)
- Ganz ehrlich? Wenig. Die Willkürlichkeit mathematischer Systeme gilt ja ganz allgemein, und Beispiele für den praktischen Nutzen der gewählten Definition sind schon da.
- Aber ganz nebenbei würde mich die Definition interessieren, nach der die 1 eine Primzahl wird und das System sehr langweilig wird. --SirJective 01:02, 25. Sep 2004 (CEST)
- Definition: eine natürliche Zahl ist genau dann Prima, wenn sie selbst ihr einziger ganz- äh, natürlichzahliger Teiler ist. Es darf, um es eindeutiger zu machen, keine natürliche Zahl geben, die mit einer oder mehreren ANDEREN natürlichen Zahlen multipliziert p ergiobt: genau dann ist p prima. In Folge ist die 1 eine prima Zahl, denn sie besitzt keinen anderen Teiler außer sich selbst. Darüber hinaus gibt es keine anderen prima Zahlen, denn jede andere natürliche Zahl besitzt die 1 als Teiler. Selbst die Null, falls vorhanden. Was soll man mit dieser Definitionen anfangen? Man kann noch nicht einmal eine Aufteilung der natürlichen Zahlen in Primafaktoren beschreiben, da der einzige in Frage kommende Faktor - die 1 - mit sich selbst multipliziert einfach sehr selbstverliebt reagiert. --Modran 04:37, 12. Mär 2005 (CET)
- Ich verstehe. Interessant, wie eine leichte Abwandlung der Definition einen uninteressanten Gegenstand liefern kann :) Der von dir im September eingefügte Absatz erklärt zwar, warum wir bestimmte Definitionen nicht verwenden. Er erklärt aber nicht, warum die Definition nicht lautet "Eine natürliche Zahl heißt Primzahl, wenn sie höchstens zwei verschiedene natürliche Teiler hat". Diese würde alle Primzahlen und die 1 einschließen, aber die 0 ausschließen (weil sie unendlich viele Teiler hat), und diese oder eine äquivalente scheint ja diejenige Definition zu sein, die die meisten im Kopf haben, wenn sie die Frage "Warum ist eigentlich die 1 keine Primzahl?" stellen. RSA funktioniert auch mit dieser abgewandelten Definition, denn in der Praxis arbeitet man sowieso mit riesigen Zahlen, so dass die Primalität der 1 gar keine Rolle spielt.
- Wie gesagt, ich halte wirtschaftliche Gründe oder die "praktische Relevanz" kaum für ausschlaggebend, wenn es um mathematische Definitionen geht (und außerdem stand die Definition einer Primzahl schon fest, lange bevor man einen "praktischen Nutzen" kannte). --SirJective 16:11, 23. Mär 2005 (CET)
Eigenschaften von Primzahlen
Ich finde, das der Abschnitt Eigenschaften von Primzahlen etwas unstrukturiert ist. So finden sich gerade am Anfang Dinge, die meiner Meinung nicht dort hingehören, wie Dewdneys Wertschätzng der Primzahl oder das sich jede zusammengesetzte Zahl als Produkt von Primzahlen darstellen läßt. Meine Einschübe müßten AFAIK ebenfalls gegliedert werden. Bevor ich mich aber über den Abschnitt hermache, würde ich gerne wissen, der Rest so meint. --Arbol01 20:28, 14. Dez 2004 (CET)
Verlagerte Diskussion
Folgende Diskussionsbeiträge warem im Artikel als HTML-Kommentar versteckt:
- !-- Eine Liste der Primzahlenlücken ist hier zu finden. --
- !-- Von einem eigenen Artikel Liste der Primzahllücken in der Wikipedia selbst würde ich abraten. Mir ist es egal, aber sie wird wahrscheinlich schnell von jemand anderem auf die Löschliste gesetzt
- !-- Es gibt einen Artikel Primzahlenlücke. Der Sollte hier verlinkt werden und der nachfolgende Bereich ggf. gekürzt werden. Ich kenne mich zu wenig aus, um es selbst zu machen. -- Benutzer:Stern
--
Pjacobi 16:27, 25. Feb 2005 (CET)
Wenn schon denn schon in der richtigen Zeitlichen Reihenfolge, und hier noch etwas von mir, auf Sterns Diskussionsseite:
Hallo Stern, dieser Artikel ist erst heute dadurch entstanden, da dem anonymen IP nicht gefallen hat, das mir seine Gestaltung der Tabelle der Lücken zwischen den Primzahlen nicht gefallen hat, und ich meine Version wieder hergestellt habe.
Ich wäre durchaus bereit, den Teil aus dem Artikel Primzahl auszulagern, und in den neuen Artikel einzuarbeiten. Nur ich würde auf meine Version der Tabelle bestehen, da diese kompakter ist, und ich bin mir auch nicht sicher, ob das Lemma "Primzahlenlücke" korrekt ist. --Arbol01 16:11, 25. Feb 2005 (CET)
- Ob der Teil ausgelagert wird, ist mir ehrlich gesagt egal. Ich nehme nur alle HTML-Kommentare aus Artikeln heraus, wo ich über sie stolpere.
- Ich habe hier die Tabellen umformatiert, damit auch bei kleineren Fensterbreiten kein horizontaler Scrollbar nötig ist, leider kein 100%-ger Erfolg, da die kgv Tabelle schon für sich alleine sehr breit ist.
- Pjacobi 16:53, 25. Feb 2005 (CET)
- Muß das sein? Ich habe lieber 4 Tabellen nebeneinander und eine Scrollbar, als keine Scrollbar und dieses Desaster. Ich werde also eine Übertabelle drüberstülpen! --Arbol01
- Wenn Dein Fenster breit genug ist, sind die Tabellen alle nebeneinander. Nur bei schmalerem Fenster kommen sie untereinander. --Pjacobi 17:15, 25. Feb 2005 (CET)
- Ooops, da hat ja jemand einen Teil gelöscht... Habe ich wieder revertiert. --Pjacobi 17:17, 25. Feb 2005 (CET)
- Ich war es zwar nicht, aber ich bin ihm, wer auch immer es war, nicht böse. Wenn Du es noch nicht festgestellt hast: nicht jeder hat 1024x768 Auflösung oder größer. Und eine vierte Tabelle versetzt unter drei anderen Tabellen sieht sch.. aus. --Arbol01 17:37, 25. Feb 2005 (CET)
- Ich teste solche Formatierungen immer mit 800x600 und finde die Seite OK, wenn uns vielleicht noch eine Möglichkeit einfällt, die kgv Tabelle etwas schmaler zu bekommen. --Pjacobi 17:39, 25. Feb 2005 (CET)
Primzahl-Formel
Eine "Formel" zur "Berechnung" aller Primzahlen --Gunther 16:05, 27. Feb 2005 (CET)
- Ich dachte, es gibt keine Formel zur Berechnung aller Primzahlen?! Oder doch? -- CdaMVvWgS 22:11, 22. Apr 2005 (CEST)
- Deshalb die Anführungszeichen: Es gibt ein Polynom (in mehreren Variablen), für das gilt, dass eine natürliche Zahl genau dann eine Primzahl ist, wenn sie Funktionswert des Polynoms für ganzzahlige Werte der Argumente ist. Über die negativen Funktionswerte ist nichts ausgesagt. Man kann also systematisch alle Funktionswerte durchgehen; die positiven liefern genau die Primzahlen.--Gunther 22:25, 22. Apr 2005 (CEST)
- Ich bilde mir ein gelesen zu haben, dass überhaupt keine Belegung bekannt ist, für die dieses Polynom einen positiven Wert liefert. Stimmt das?--MKI 03:19, 23. Apr 2005 (CEST)
- Deshalb die Anführungszeichen: Es gibt ein Polynom (in mehreren Variablen), für das gilt, dass eine natürliche Zahl genau dann eine Primzahl ist, wenn sie Funktionswert des Polynoms für ganzzahlige Werte der Argumente ist. Über die negativen Funktionswerte ist nichts ausgesagt. Man kann also systematisch alle Funktionswerte durchgehen; die positiven liefern genau die Primzahlen.--Gunther 22:25, 22. Apr 2005 (CEST)
"Genau dann, wenn"
Zulässige Formulierungen sind:
- "...ist genau dann eine Primzahl, wenn..."
- "...wird Primzahl genannt, wenn..."
- Wenn explizit dasteht, dass etwas definiert wird: "...ist eine Primzahl, wenn...".
Nicht gut:
- "...ist Primzahl, wenn..." (ohne explizite Erwähnung einer Definition)
- "...wird genau dann Primzahl genannt, wenn..." (das Nennen ist keine mathematische Aussage)
Der dritte akzeptable Punkt oben ist im konkreten Fall nicht gegeben, weil es sich um zwei Bedingungen handelt, und nur eine davon kann die Definition sein.
"Alternative Formulierung" finde ich nicht gut, weil nicht nur umformuliert wird. Aus der Tatsache, dass eine Zahl genau zwei Teiler hat, auf die zwei Teiler zu kommen, ist zwar nicht schwierig, aber nicht nur eine Frage der Formulierung.--Gunther 02:17, 28. Mär 2005 (CEST)
- Es ging mir hierbei nicht um Worte (Formulierungen), sondern einzig um die Sache (kurze und treffende Definition des Begriffs "Primzahl").
Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
PS: "(Alternativ: Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Teilern.)" Das stelle ich hier zur ernsthaften Diskussion. Alle vorherigen (meine eingeschlossen) Definitionen beginnen mit einer indirekten Erklärung: ...wird Primzahl genannt...
Aber in einer Enzyklopädie müssen wir _direkte_ Erklärungen geben, deshalb dieser Beitrag.
- Ich hatte die Änderung des anonymen Benutzers von genau dann, wenn zu wenn rückgängig gemacht, da es weitere solche Stellen im Artikel gab, die nicht geändert wurden. Wenn jemand eine konsistente Änderung vornimmt habe ich nichts dagegen. Außerdem erschien mir dieser Benutzer aufgrund von einer anderen Änderung (A-Primzahl) als unseriös.
- Für "weitere Definitionen" schlage ich eine Formulierung in der Art Die Primzahlen lassen sich auch durch folgende Eigenschaft charakterisieren: vor.--MKI 11:47, 28. Mär 2005 (CEST)
- "Außerdem erschien mir dieser Benutzer aufgrund von einer anderen Änderung (A-Primzahl) als unseriös." Ich muß an dieser Stelle offenbaren, daß dieser betreffende Benutzer (der mit den ominösen "A-Primzahlen") der gleiche Benutzer ist, der alle letzten Verfeinerungen und Präzisierungen der Definition von "Primzahl" in diesem Wiki-Artikel vorgenommen hat, nämlich
- Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- PS: Die unsinnigen "A-Primzahlen" sind natürlich testhalber vorgeschlagen worden. Die direkte Definition "Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Teilern.", die an Prägnanz schwer zu überbieten sein dürfte, und meine anderen, vorhergehenden indirekten Definitionen hingegen sind ebenso kurz wie verständlich und korrekt. Ich freue mich auf prägnantere Definitionen.
- Es ist immer erfreulich, wenn sich neue Mitarbeiter finden. Ein Tip zum Umgang mit Deinen Mitautoren: Wenn deutlich wird, dass es unterschiedliche Auffassungen zu einer Frage gibt (im konkreten Fall haben drei verschiedene Benutzer Deine Änderungen jeweils rückgängig gemacht), ist es sinnvoller, die Frage auf der Diskussionsseite zu klären, bevor man weitere Änderungen vornimmt. Ansonsten besteht die Gefahr, einen unseriösen Eindruck zu machen, auch wenn die Änderungen für sich vielleicht ihre Berechtigung hatten. Die Artikelseite zu Testzwecken zu missbrauchen ist ebenfalls nicht hilfreich.
- Wenn Du Dich nicht als fester Benutzer anmeldest, hast Du es ohnehin etwas schwerer. Es ist leider so, dass es viele unangemeldete Benutzer gibt, die glauben, sich mit einem "hihi" o.ä. auf einer Artikelseite verewigen zu müssen.
- --Gunther 10:32, 30. Mär 2005 (CEST)
- Verstanden: Aus den von Dir genannten Gründen habe ich meine letzte Änderung des Abschnitts "Formale Definition" hier zur Diskussion gestellt. Falls sich jemand an der in Klammern gesetzten Alternativdefinition im Artikel stören sollte (oder gar etwas Falsches daran findet), dann wird er/sie diese Zeile ohnehin löschen. Ich habe damit kein Problem.
- Ich bin in der Tat kein registrierter Wiki-Beiträger und habe meine Gründe dafür. Da meine Beiträge hier stets mit meinem vollen Namen und meiner E-Mail-Adresse versehen sind, wird niemand mich als anonymen Benutzer verstehen können. Es bleibt noch viel zu verbessern im Artikel "Primzahl". Laßt uns gemeinsam daran arbeiten.
- Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- PS: Mein Kürzel für die Zusammenfassung wird künftig lauten ROHA
Euklid
...zeigt nicht direkt, dass man aus endlich vielen Primzahlen eine größere konstruieren kann, sondern nur, dass es weitere geben muss.--Gunther 02:05, 21. Mai 2005 (CEST)
- ..."zeigt nicht direkt, dass man aus endlich vielen Primzahlen eine größere konstruieren kann, sondern nur, dass es weitere geben muss."--Gunther 02:05, 21. Mai 2005 (CEST)
Bisher dachte ich, daß Euklid sehr wohl zeigte: Wenn es nicht endlich viele Primzahlen gibt, dann sind derer unendlich viele. Niemand braucht diese Primzahlen "konstruieren", und trotzdem sind sie da. Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Gunther, bitte etwas mehr Klarheit -- "Daß es weitere geben muß" -- Na ja, welche denn ? Kleinere oder größere ? Danke. Wir reden über Primzahlen, nicht über Teppiche oder Fenster.
- Siehe Satz von Euklid. Man kann nicht sagen, ob die Primteiler von (Bezeichnungen siehe dort) größer oder kleiner als sind, nur dass sie andere Primzahlen sein müssen.--Gunther 10:11, 21. Mai 2005 (CEST)
- Wenn man das Produkt beliebiger Primzahlen nimmt, die man kennt, dann stimmt es, daß man nicht sagen man, ob es sich um größere oder kleinere, unbekannte Primzahlen handelt. Wenn man aber sicher sein kann, das es sich um ein primorial handelt, dann ist/sind die Primzahl(en) größer als die des Primorial. --Arbol01 10:31, 21. Mai 2005 (CEST)
- Satz von Euklid gibt recht genau die von Euklid bewiesene Aussage wieder, siehe hier.--Gunther 10:56, 21. Mai 2005 (CEST)
Primzahlformeln und größte bekannte Primzahl
- Ich wollte den Unterschied deutlich machen, weshalb es eine größte bekannte Primzahl, aber keine größte bekannte Zweierpotenz gibt.
- Kann man beweisen, dass es keine Primzahlformel gibt?
- Die Formel liefert etwa mit Wahrscheinlichkeit eine Primzahl.
--Gunther 10:53, 21. Mai 2005 (CEST)
- Ich wollte das lieber auseinanderhalten.
- Nein, man kann nicht beweisen, das es keine Primzahlformel gibt, oder zumindest ich kann es nicht. Gefunden hat bisher keiner eine. Ansonsten könnte man sich die Sache mit den Primzahlrekorden ersparen.
- Die Formel liefert etwa mit Wahrscheinlichkeit eine Primzahl. Das ist falsch. pi(n) = besagt lediglich, das es im Bereich zwischen 2 und n ungefähr pi(n) Primzahlen gibt. Diese Formel umzudrehen, um bei dem Wechsel x=pi(a) und x+1 = pi(b) zu sagen, das b eine Primzahl ist, ist sehr spekulativ. andererseits kann man es natürlich mal probieren. --Arbol01 11:09, 21. Mai 2005 (CEST)
- Natürlich ist die Zahl nicht mit Wahrscheinlichkeit eine Primzahl (genausowenig aber ). Mein Punkt war, dass die Formulierung "eine gewisse Wahrscheinlichkeit" so schwammig ist, dass sie auch schon auf zutrifft.--Gunther 11:14, 21. Mai 2005 (CEST)
- Ich arbeite noch daran. Man kann auch noch 6n+1, 6n-1, 4n+1 und 4n-1 anführen. --Arbol01 11:25, 21. Mai 2005 (CEST)
- Ich würde den präzisen Teil (Dirichletscher Primzahlsatz) in "Primzahlverteilung", den Teil mit Mersenne-Primzahlen in "Größte bekannte Primzahl" eingliedern. Ich nehme nicht an, dass man irgendwie beweisen (oder auch nur vernünftig formulieren) kann, dass Mersenne-Zahlen wahrscheinlicher prim sind als andere Zahlen. Haben die Primorials irgendeine theoretische oder praktische Anwendung?--Gunther 11:33, 21. Mai 2005 (CEST)
- Dann gliedere es ein (du hast eine gewisse Vorstellung oder Idee, die ich nicht habe).
- Ich weiß es nicht. Allerdings ist die Wahrscheinlichkeit, das bei p(n)=n p(n) eine Primzahl ist höher, als bei p(n)=2*n, und bei p(n)=6n+1 höher als bei p(n)=6n+3.
- Eine theoretische Anwending sicher, sogar zwei. Einmal bei dem Satz von Euklid und zweitens bei den Primzahllücken. Primorial und Primorial prime. Ansonsten schaue ich nochmal im Ribenboim nach. --Arbol01 11:45, 21. Mai 2005 (CEST)
- Ein Problem besteht darin, dass es auf den natürlichen Zahlen kein kanonisches Wahrscheinlichkeitsmaß gibt, und mit der Dichte wie im dirichletschen Primzahlsatz kommt man bei Mengen, von denen man nicht weiß, dass sie unendlich sind, nicht weiter. Natürlich ist die relative Dichte der Primzahlen im Vergleich zu den ungeraden Zahlen doppelt so gross wie die im Vergleich zu allen Zahlen. Aber viel mehr dürfte da nicht zu holen sein.--Gunther 13:00, 21. Mai 2005 (CEST)
- Was ich übersehen habe (ist mir eben beim Einkaufen aufgegangen), bei der Mersenne-Formel und dem Primorial geht es ja auch darum, möglichst große Zahlen zu erzeugen. Bei 6n+-1 ist die Dichte noch einen Hauch größer, als bei den ungeraden Zahlen. --Arbol01 13:08, 21. Mai 2005 (CEST)
- Man kann die Dichte "beliebig groß" machen: Nach Primzahlsatz und Dirichlet ist asymptotisch
- Die Gesamtdichte ist natürlich trotzdem Null.--Gunther 13:24, 21. Mai 2005 (CEST)
- Man kann die Dichte "beliebig groß" machen: Nach Primzahlsatz und Dirichlet ist asymptotisch
- Was haben die obigen/untigen Ausführungen denn mit meiner Aussage zu tun, daß es stets eine "größte bekannte" Primzahl gibt ? Ich sage: nicht das Geringste ! Also bitte, fügt meine kleine Feststellung wieder ein in die Wiki-Primzahl_Seite, bevor ich gezwungen bin, es (abermals) selbst zu tun. (Die Nebenrechnungen haben mit dieser Aussage rein gar nichts zu tun; sie dienen nur als wertloser Schmuck für den Verfasser.) Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Ich hab's mal so formuliert, wie ich es für richtig halte. Martin Vogel 03:16, 29. Mai 2005 (CEST)
- Was haben die obigen/untigen Ausführungen denn mit meiner Aussage zu tun, daß es stets eine "größte bekannte" Primzahl gibt ? Ich sage: nicht das Geringste ! Also bitte, fügt meine kleine Feststellung wieder ein in die Wiki-Primzahl_Seite, bevor ich gezwungen bin, es (abermals) selbst zu tun. (Die Nebenrechnungen haben mit dieser Aussage rein gar nichts zu tun; sie dienen nur als wertloser Schmuck für den Verfasser.) Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Das "stets" habe ich herausgenommen. Solange nicht geklärt ist, ob es eine "Primzahlformel" gibt, kann man nicht wissen, ob es nicht morgen auf einmal keine größte bekannte Primzahl mehr gibt.--Gunther 15:04, 29. Mai 2005 (CEST)
- Die obige Aussage ist ungültig, da jederzeit eine Primzahl bekannt ist, deren Größe alle kleineren vorher bekannten Primzahlen übersteigt. Beispiel: Die Zahl 5 war irgendwann die größte bekannte Primzahl, nämlich als nur die 2 und die 3 als Primzahlen identifiziert waren. Vorher war die größte bekannte Primzahl die 3, und davor die 2. Das "stets" ist also ganz unabhängig von einer irgendwie gearteten "Primzahlformel". Dies nur zur Klarstellung für diejenigen, die zwar das Wort "Primzahl" kennen, aber nicht so recht etwas mit dem _Begriff_ "Primzahl" anzufangen wissen. Kurzfassung: Die elementare Logik besagt, wenn es keine größte Primzahl gibt, dann muß es _stets_ und _immer_ eine größte "bekannte" Primzahl geben. (So wie es stets eine größere natürliche Zahl als jede vorgelegte gibt.) Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Worauf der Verfasser abzielt ist natürlich folgendes: Falls niemand eine _neue und größere_ Primzahl findet, dann gibt es keine "neue" größte bekannte Primzahl. Na ja, dann bleibt immer noch die "alte" Primzahl die größte bekannte...
- PPS: Nochmals zur Klarstellung: Eine größte _bekannte_ (und auf dieses Wort _bekannte_ kommt es hier allein an) Primzahl gab es stets und immer, solange Menschen nach Primzahlen gesucht haben.
- Nein. Findet z.B. jemand morgen heraus, dass jede Zahl der Form (oder wie auch immer) eine Primzahl ist, dann gibt es keine größte bekannte Primzahl mehr, weil es auf einmal leicht ist, beliebig große Primzahlen anzugeben. Das versuche ich mit der Bemerkung über die Zweierpotenzen auszudrücken.--Gunther 08:43, 4. Jun 2005 (CEST)
- "weil es auf einmal leicht ist, beliebig große Primzahlen anzugeben." Das versuche ich gerade zu erklären: Wenn jemand morgen (oder in der nächsten Sekunde) herausfindet, daß eine Zahl "b" eine größere Primzahl als eine zuvor bekannte Primzahl "a" ist (also 5 > 3) -- dann ist es völlig hinreichend, diese Primzahl "bekannt zu geben", damit diese Primzahl als die größte "bekannte" Primzahl gelten kann. Falls jede Zahle der Form " (oder wie auch immer)" eine Primzahl wäre, so wäre allein diejenige Primzahl die "größte _bekannte_ Primzahl", welche wenigstens zwei Autoritäten (außer meiner oder deiner selbst) für gültige Primzahlen befunden hätten. Aber dies ändert nichts am Sachverhalt: Die größte Primzahl kann es nicht geben. Die größte _bekannte_ (Sekunden spielen hier natürlich gar keine Rolle) Primzahl muß es logischerweise geben. Daran führt kein Weg vorbei, solange die Primzahl 5 größer als die Primzahl 3 ist. Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: "Bekannt" bedeutet für mich, daß ein anerkannter Beweis der Primalität vorliegt.
- Eine "Primzahlformel" ist doch das Sieb des Eratosthenes, damit kann man doch lückenlos alle Primzahlen berechnen. Sehr aufwändig, aber berechenbar. — Martin Vogel 17:34, 29. Mai 2005 (CEST)
- Natürlich ist auch der Euklids Beweis eine Konstruktionsvorschrift für unendlich viele Primzahlen. Aber willst Du behaupten, dass es eine größte bekannte Zweierpotenz oder eine größte bekannte natürliche Zahl gibt? Diesen Unterschied versuche ich zu erklären.--Gunther 17:38, 29. Mai 2005 (CEST)
- Mit Eratosthenes findet man lückenlos alle Primzahlen, mit Euklid zwar unendlich viele, aber nicht alle, sondern es gibt Lücken. Wo ist jetzt der prinzipielle Unterschied zu den natürlichen Zahlen? Bei beiden findet man die nächstgrößere zu jeder gegebenen Zahl, indem man rechnet. Bei den Primzahlen zunehmend langwieriger und aufwändiger, bei den natürlichen Zahlen durch addieren einer Eins. Aber in beiden Fällen geht es einen Schritt weiter, beliebig oft wiederholbar. — Martin Vogel 22:12, 29. Mai 2005 (CEST)
- Trotzdem wäre es lächerlich, von der größten bekannten natürlichen Zahl zu sprechen, auch wenn natürlich in der gesamten Geschichte der Menschheit nur endlich viele betrachtet wurden.--Gunther 22:18, 29. Mai 2005 (CEST)
- Natürliche Zahlen muss man ja auch nicht ausrechnen. Man kann leicht die grösste natürliche Zahl in einem beliebig grossen Intervall angeben, für die grösste Primzahl ist das ohne Rückgriff auf eine beliebig grosse Rechenleistung nicht möglich. --213.54.194.248 07:36, 4. Jun 2005 (CEST)
- Anderes Beispiel: was ist der größte bekannte Binomialkoeffizient? Was ist die größte bekannte Zahl n, die sich in der Form n=k! darstellen lässt? Was ist die größte bekannte Zweierpotenz? Sobald ein "einfaches" Rezpet da ist, zu einer größten Zahl mit einer bestimmten Eigenschaft eine noch größere Zahl mit der selben Eigenschaft zu finden, hat es keinen Sinn mehr, von der größten bekannten Zahl mit dieser Eigenschaft zu sprechen. --NeoUrfahraner 12:36, 4. Jun 2005 (CEST)
- Interessant wäre evtl. die Betrachtung der Komplexitätsklasse, etwa des Aufwands zur Berechnung der -grössten Primzahl bei bekannten. Laut Primzahltest ist der reine Test polynomiell komplex. --213.54.209.168 19:03, 4. Jun 2005 (CEST)
- Ja. Wenn es ein einfaches Verfahren gäbe, aus der -ten Primzahl die -te zu berechnen, hätte es keinen Sinn mehr, von der größten bekannten Primzahl zu sprechen. Ein solches Verfahren ist aber nicht bekannt; die Berechnung der -ten ist genauso schwierig. --NeoUrfahraner 19:09, 4. Jun 2005 (CEST)
- Das Verfahren ist ja an sich trivial, Primzahlsieb erweitern, ein paar Striche ziehen und nachschauen (bildlich gesprochen). Die Frage ist jetzt wie effektiv bzgl. Rechenzeit und Speicherplatz man das ausführen kann. --213.54.221.37 19:50, 4. Jun 2005 (CEST)
- Das Primzahlsieb wird nicht einfacher, wenn Du bei einer großen bekannten Primzahl startest; Du musst trotzdem wieder mit den ersten Primzahlen zu sieben beginnen. Für jede Primzahl brauchst Du mindestens ein Bit; das Weltall hat ca. Atome; spätestens bei bist Du mit dem Sieben am Ende. Die derzeit größte bekannte Primzahl ist um Größenordnungen größer. --NeoUrfahraner 19:15, 5. Jun 2005 (CEST)
- Das ist einfach zu beantworten: Ließ meinen letzten Beitrag etwas genauer. Dann wirst Du hoffentlich etwas klüger. Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Nein, Dein Beitrag beantwortet nicht die Frage, was der größte bekannte Binomialkoeffizient sein soll. Man braucht keine 2 Autoritäten um festzustellen, welches der größte bekannte Binomialkoeffizient ist. Warum wohl setzt die EFF einen Preis für die erste Primzahl größer als XXX aus, nicht aber für den ersten Binomialkoeffizienten, der einen bestimmten Wert überschreitet? Warum interessiert sich niemand für den größten Binomialkoeffizienten? Der Trugschluss ist ganz einfach, dass man auf die zwei Autoritäten verzichten kann, sobald ein einfacher Algorithmus zum Berechnen beliebig großer Primzahlen vorliegt. Angenommen, die Gunther-Formel liefert wirklich Primzahlen, und zwei Autoritäten bestätigen diese Formel. Ich sage dann, ist die größte bekannte Primzahl; was hindert dann Gunther daran, zu sagen, nein ist eine größere Primzahl? --NeoUrfahraner 14:41, 4. Jun 2005 (CEST)
- @MKI: so wirklich glücklich bin ich mit Deiner Formulierung auch nicht. Was heißt "bis heute"? Was war vor 10 Millionen Jahren die größte bekannte Primzahl? Die Verfechter von "stets" oder "immer" wollen ja eine Auskunft auch für den Fall machen, dass vielleicht irgendwann eine Formel zur effizienten Berechnung von Primzahlen gefunden wird; da kann man ds "bis heute stets" genausogut durch ein "lediglich" ersetzen". --NeoUrfahraner 14:41, 4. Jun 2005 (CEST)
- Habs abgeändert. Mit deinem Binomialkoeffizienten-Beispiel bin ich auch nicht so wirklich glücklich, schließlich ist jede natürliche Zahl auch ein Binomialkoeffizient, so dass man die Diskussion darüber auf die ergebnislose Diskussion über die natürlichen Zahlen weiter oben zurückführen kann. Nimm stattdessen besser die mittleren Binomialkoeffizienten oder die Fakultäten oder ähnliches.--MKI 15:21, 4. Jun 2005 (CEST)
- Bzgl. dem Binomialkoeffizienten-Beispiel stimme ich Dir zu; mit der geänderten Formulierung bin ich zwar nicht wirklich glücklich (sie ist IMHO umständlicher als notwendig), kann aber damit leben. --NeoUrfahraner 16:05, 4. Jun 2005 (CEST)
- Was konkret findest du denn unnötig umständlich?--MKI 01:35, 5. Jun 2005 (CEST)
- Der Satzteil "so dass es stets eine größte bekannte Primzahl gab, seitdem sich die Menschen mit Primzahlen befassen" ist eigentlich nur verständlich, wenn man diese Diskussion kennt. Wenn man sich The Largest Known Prime by Year ansieht, findet man gesicherte Aussagen erst ab 1588; genaugenommen wirft diese Formulierung erst recht die Frage auf, was "bekannte Primzahl" eigentlich bedeutet - siehe auch die Anmerkung von Benutzer:Chef weiter unten. Bevor wir aber den Edit-War fortsetzen müssen, ist es wohl vernünftiger, bei der derzeitigen Formulierung zu bleiben. --NeoUrfahraner 19:15, 5. Jun 2005 (CEST)
- Der vordere Satzteil war zuvor schon Bestandteil des Artikels, einige Leute (ich nicht) schienen da großen Wert darauf zu legen. Den Teil nach dem Komma habe ich nach deinem Einwand eingefügt, auch hier habe ich nichts dagegen, sollte er wieder entfernt werden. Prinzipiell bin ich der Ansicht, dass man durch Wortzerklauberei viele Artikel (auch und genauso in traditionellen Enzyklopädien) kaputtdiskutieren könnte, und dass man dennoch andererseits den Lesern die Prise Menschenverstand zutrauen kann, die es einem erlaubt auf ansonsten nötige Sicherheitsfloskeln zu verzichten.--MKI 19:40, 5. Jun 2005 (CEST)
- Was ich befürchtet habe, ist eingetreten; "bis heute" reicht den "stets"-Verfechtern nicht. Die jetzige Formulierung von 84.148.88.166 ist völlig Fehl am Platz und emprisch nicht belegt (bei welcher Untersuchung wurde denn festgestellt, was für die meisten Menschen einsichtig ist?) --NeoUrfahraner 15:01, 4. Jun 2005 (CEST)
Ich möchte mal zwei Punkte zur Klärung einbringen:
- Es gibt Formeln, die theoretisch jede Primzahl liefern, wenn man unendlich viel Zeit hat, darin Variablen einzusetzen. Siehe etwa hier und hier. Im Grunde gilt das auch für die Verfahren Eratosthenes' und Euklids, da gebe ich Martin Vogel recht.
- Die Frage ist nun, was man unter "größte bekannte Primzahl" versteht.
- Versteht man darunter "theoretisch (= mit hinreichend großem Zeitaufwand) berechenbare Primzahl, die größer ist als alle anderen theoretisch berechenbaren Primzahlen" so gibt es keine größte bekannte Primzahl.
- Versteht man darunter "Zahl, die man (1) explizit als Term aus anderen Zahlen aufschreiben kann, und von der man weiß, (2)daß sie eine Primzahl ist, (3) daß sie größer ist als alle anderen Zahlen mit (1) und (2)", dann hat es zumindest bisher immer eine größte bekannte Primzahl gegeben - wenn ich die Formeln richtig lese, geben sie nämlich keinerlei Möglichkeit außer brute force, zu einer Primzahl eine größere Primzahl zu finden. Ob das so bleibt, weiß ich nicht (wenn z.B. jemand eine Formel fände, die jede Primzahl liefert, und man zusätzlich sagen könnte, wann diese Formel beliebig große Terme liefert, wäre es nicht mehr so. Hier liegt Hans Rosenthal sicherlich falsch.)
Jedenfalls geht der Streit nur um die Frage, was man unter "bekannt" versteht. Ich neige zur zweiten Auffassung, würde aber verstehen, wenn (zumindest nicht-finitistische) Mathematiker die erste vorziehen. Das immer oder stets ist zu verneinen, es sei denn, es gibt einen Beweis, daß eine Formel wie die kursiv beschriebene nicht existiert.--Chef Diskussion 15:04, 4. Jun 2005 (CEST)
- Ja, Du hast recht. Deswegen ist die Verwendung eines auf die Zukunft bezogenen Wortes "stets" problematisch, weil es mehr Fragen aufwirft (nämlich "Was heißt bekannt?") als es beantwortet. Mit Prognosen verlässt man das gesicherte mathematische Fundament und begibt sich auf wackeligen philosophischen Boden. --NeoUrfahraner 16:02, 4. Jun 2005 (CEST)
- Ich sag mal so: Die Mathematiker haben vom Begriff "stets" den Begriff "Stetigkeit" abgeleitet. Sie waren damit "bisher" sehr erfolgreich. Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Ja, ich habe mich inzwischen ein wenig korrigert. "Stets" für die Vergangenheit passt; nur für die Zukunft ist es problematisch. Um bei der Stetigkeit zu bleiben: Wenn eine Funktion im Intervall stetig ist, heißt das noch lange nicht, dass sie auch im Intervall stetig sein wird. --NeoUrfahraner 16:41, 4. Jun 2005 (CEST)
Die größte bekannte Primzahl in neuerer Zeit war immer eine Mersenne-Primzahl
Der Satz "Die größte bekannte Primzahl in neuerer Zeit war immer eine Mersenne-Primzahl" stimmt nicht; beispielsweise war von 1989 bis 1992 die Zahl größte bekannte Primzahl, siehe The Largest Known Prime by Year "Bei der Suche nach großen Primzahlen werden deshalb nur Zahlen diesen Typs auf Primalität untersucht" stimmt auch nicht; Yves Gallot's Proth.exe sucht etwas andere Typen von Primzahlen und belegt z.B. Platz 5 von THE LARGEST KNOWN PRIMES. --NeoUrfahraner 16:25, 4. Jun 2005 (CEST)
- Die Neuerungen gehen auf mich zurück.
- 1. Meine Formulierung war Die größte bekannte Primzahl war praktisch immer eine Mersenne-Primzahl, zugegeben etwas schwammig, aber ich wollte mich nicht festnageln da ich es nicht ganz genau wusste. Benutzer:84.148.88.166 war anderer Meinung und hat das Wort praktisch mit dem Kommentar ROHA; Es geht nicht um die "Form", sondern um die Sache. Kann niemand diese einfachen Sachverhalte _auseinander halten_ ? Die _Form_ spielt keine Rolle (5>3), das _Verständnis_ zählt ! Verstanden...? entfernt. In der englischen Wikipedia behaupten sie übrigens, dass seit dem Einsatz von Rechnern die größte bekannte Primzahl immer eine Mersenne-Primzahl gewesen sei, das stimmt dann wohl auch nicht.
- 2. Ich wusste nicht, dass tatsächlich auch andere Typen von Zahlen für große Primzahlen untersucht werden. Ich bessere es aus.--MKI 16:35, 4. Jun 2005 (CEST)
- Doch, es gibt auch noch andere Arten von großen Primzahlen, die von Interesse sind. Z.B. solche, die Bestandteil von großen Carmichael-Zahlen sind (siehe Carmichael-Zahlen nach Chernick und des anderen Generators). --Arbol01 14:28, 6. Jun 2005 (CEST)
- Groß ist relativ. Hier geht es um die Größenordnung der Rekordprimzahlen. Ich glaube nicht dass nur annähernd so große Primfaktoren von Carmichael-Zahlen bekannt sind.--MKI 14:51, 6. Jun 2005 (CEST)
- Doch, es gibt auch noch andere Arten von großen Primzahlen, die von Interesse sind. Z.B. solche, die Bestandteil von großen Carmichael-Zahlen sind (siehe Carmichael-Zahlen nach Chernick und des anderen Generators). --Arbol01 14:28, 6. Jun 2005 (CEST)
- Zitat:"Für k=10329-4624879 die eine 1000 stellige Carmichael-Zahl erzeugt, ergeben sich die drei folgenden Faktoren:
- (12936*10329-59827428149)*(14784*10329-68374203599)*(20328*10329-94014529949) "
- Das ist nicht die größte Carmichael-Zahl, die bekannt ist, aber es gibt bie bei den Primzahlen auch Carmichael-Zahl Rekorde, bei denen riesige Primzahlen mit abfallen. Gegen die Mersenne-Zahlen können diese allerdings nicht anstinken.
- 1998 lag der Rekord von Dubner bei eine Carmichael-Zahl mit drei Primfaktoren bei einer 10200stelligen Zahl. Das bedeutet, das jede der drei Primzahlen etwa 3400 Stellen hatte --Arbol01 14:59, 6. Jun 2005 (CEST)
- Die Primzahlen, die du oben genannt hast, sind mit heutigen Rechner nichts besonderes mehr. Die Eingabe nextprime(10^330) in gp (frontend für pari, ein Computeralgebrasystem) gibt auf meinem Athlon-1000 nach ein paar Sekunden eine Primzahl aus, die größer ist als die von dir genannten.--MKI 16:26, 6. Jun 2005 (CEST)
- Zitat:"Für k=10329-4624879 die eine 1000 stellige Carmichael-Zahl erzeugt, ergeben sich die drei folgenden Faktoren:
Danke für die neue Formulierung; noch eine Anmerkung: "Es macht sich aber niemand die Mühe, nach diesen zu suchen, da die Identifikation dieser Primzahlen ungleich aufwändiger wäre als beispielsweise das Auffinden einer noch größeren Mersenne-Primzahl." Abgesehen davon, dass die Anzahl dieser Primzhalen sowieso größer als die zahl der Atome im Universum ist, wird sehr wohl nach einzelnen dieser Primzahlen gesucht. Chris Caldwell reiht unter seinen Titanen auch solche Leute, die nicht die größte, aber eine andere große Primzahl in der Wertung gefunden haben. Solche Primzahlen sind beispielsweise bei der Lösung des Sierpinski Problems von Interesse. Platz 5 von THE LARGEST KNOWN PRIMES ist beispiesweise ein Beitrag zur Lösung des Sierpinski Problems; es kann durchaus sein, dass man bei der Lösung des Sierpinski Problems in die angegeben Lücke vorstoßen muss. Vielleicht kannst Du auch hier eine passende Formulierung finden. --NeoUrfahraner 19:48, 5. Jun 2005 (CEST)
Größte bekannte Primzahl (Fortsetzung)
Aber kommt einfach mal auf die Ausgangsfrage zurück: "daß es stets eine "größte bekannte" Primzahl gibt"? Das war die Ausgangsfrage. Eigentlich war es die zwangsläufig richtige und logisch korrekte Eingangsbehauptung. Ist inzwischen vielleicht ein neuer Ausgang gefunden ? Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Du bringst die Diskussionen durcheinander. Hier geht es um Die größte bekannte Primzahl in neuerer Zeit war immer eine Mersenne-Primzahl. Die Diskussion, die du suchst, findest du einen Abschnitt weiter oben.--MKI 17:56, 4. Jun 2005 (CEST)
Könnte es nicht sein, daß ich nicht die Diskussion, sondern nur Deinen Geist durcheinander bringe ? Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
PS: Zur Erinnerung: Ausgangspunkt dieser Diskussion war das Thema größte bekannte Primzahl, nicht: Die größte bekannte Primzahl in neuerer Zeit war immer eine Mersenne-Primzahl. Letzteres Thema wurde erst später eingeführt und hat die ursprüngliche Diskussion leider überlagert. Um auf das Ausgangsthema zurückzukommen, stelle ich folgende Frage: Warum wohl trägt die Webseite THE LARGEST KNOWN PRIMES diesen Namen, DIE GRÖSSTEN BEKANNTEN PRIMZAHLEN ? Wäre die Qualifizierung _KNOWN_ im Namen nicht von Bedeutung, so hätte Prof. Chris Caldwell sie gewiß nicht verwendet. Der wesentliche Unterschied zwischen "größte natürliche Zahl" und "größte bekannte Primzahl" besteht darin, daß es für die natürlichen Zahlen eine wohldefinierte Bildungvorschrift (Axiom) gibt, für die Primzahlen aber nicht. Ich bin offengesagt etwas erstaunt, daß die Bedeutung des Wortes "bekannt" im Zusammenhang mit den Primzahlen so vielen Schreibern in diesem Forum mehr oder weniger unbekannt zu sein scheint. Wie wäre es mit einem Frage- und Antwortspiel, um den Sachverhalt zu klären ? A: Ich kenne die Primzahl 2, kennst du eine größere Primzahl ? B: Ja, ich kenne die Primzahl 3, kennst du eine größere Primzahl ? A: Ja, ich kenne die Primzahl 5,... usw. Dieses Spiel kann sich ewig hinziehen oder auch sehr kurz dauern. Dieses Spiel wird einen Gewinner haben, wenn es zeitlich begrenzt wird.
- Herr Rosenthal, Sie schreiben: Der wesentliche Unterschied zwischen "größte natürliche Zahl" und "größte bekannte Primzahl" besteht darin, daß es für die natürlichen Zahlen eine wohldefinierte Bildungvorschrift (Axiom) gibt, für die Primzahlen aber nicht. Vielleicht ist es Ihrer Aufmerksamkeit entgangen, daß sich genau um diese Frage - gibt es eine "wohldefinierte Bildungsvorschrift für Primzahlen" - die ganze bisherige Diskussion dreht. Ich hatte unter anderem zu zwei solchen Formeln je einen Link angegeben und dann die Frage gestellt, ob diese als das gelten können, was Sie "wohldefinierte Bildungsvorschrift" nennen. In dieser nicht rein mathematischen Frage kann man verschiedene Standpunkte vertreten, allerdings scheinen mir alle hier einer Meinung - nämlich mit dem jetzigen Artikel zufrieden - zu sein; außer Ihnen, was evtl. daran liegt, dass Sie nicht auf demselben Diskussionsstand sind. Vielleicht ja jetzt. --Chef Diskussion 02:25, 12. Jun 2005 (CEST)
- Eines vorweg: Manchmal fällt es mir schwer zu unterscheiden, wen in diesem Forum ich
duzen darf und wen ich siezen muß. Ich werde also folgender Konvention folgen: Wer mich duzt, den rede ich mit "du" an, die anderen mit "Sie". Vielleicht erinnern Sie sich noch (andernfalls können Sie es leicht in der Versions-Geschichte zum Artikel "Primzahl" finden: http://de.wikipedia.org/w/index.php?title=Primzahl&diff=next&oldid=5143304), daß ich das Kapitel "Größte Primzahl" aus guten Gründen in "Größte bekannte Primzahl" umbenannt habe. Hiermit begann diese Diskussion zum Thema "größte _bekannte_ Primzahl". Diese Diskussion hat seither ihre eigenen Wege genommen, und das ist ganz in Ordnung. Dafür ist die Seite "Diskussion" letztendlich gedacht. Ihre Aussage "allerdings scheinen mir alle hier einer Meinung - nämlich mit dem jetzigen Artikel zufrieden - zu sein; außer Ihnen," klingt in meinen Ohren sehr befremdlich. Ist das wirklich Ihr Maßstab bei der Mitarbeit an einem Artikel in der Wikipedia, daß "alle einer Meinung" sind damit ? Glauben Sie allen Ernstes, ein Wikipedia-Artikel zeichnet sich in erster Linie dadurch aus (und verdient am Ende gar das Prädikat "exzellent"), daß alle seine Leser und Schreiber _einer Meinung_ sind ? Ich habe ein anderes Verständnis des Wikipedia-Prinzips: Ein Artikel kann nur dann verbessert werden und wachsen, wenn dessen Beiträger sich mit dem Erreichten niemals zufrieden geben und immer wieder daran arbeiten. Nur so können sie fortschreiten, auch wenn sie zuzeiten irren. Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Übrigens, ich glaube auf dem aktuellen Diskussionsstand zu sein. Sind Sie es ?
- Es gibt in der Wikipedia Konventionen, wo welche Diskussion geführt wird. Ich habe für ein neues Thema extra einen neuen Abschnitt begonnen; das alte Thema bitte oben diskutieren. --NeoUrfahraner 18:52, 4. Jun 2005 (CEST)
Das ist ein fairer Vorschlag. Den Wiki-Konventionen folge ich ohne Murren, da sie vernünftig sind. Wenn nur die Beiträger zum Thema "größte bekannte Primzahl" einer solchen (in diesem Falle mathematschen) Konvention zu folgen bereit wären. Ich wäre schier glücklich! Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Da Du anscheinend unbedingt hier unten weiter diskutieren willst, habe ich eine Zwischenüberschrift eingeführt, um ein wenig Ordnung hereinzubringen. Nach meinem Verständnis ist der Stand der Diskussion nun folgender: Benutzer:Chef hat die berechtigte Frage aufgeworfen, was man unter "größte bekannte Primzahl" versteht. Meiner Meinung nach bieten sich Dir folgende Möglichkeiten:
- Wikipedia dient nicht der Theoriefindung, sondern der Theoriedarstellung Am besten ist, Du findest ein mathematisches Literaturzitat, in dem steht, dass NN im Jahr YYYY bewiesen hat, dass es stets eine größte bekannte Primzahl gibt. Dann sind wir auf gesichertem objektivem Boden, das kann man wunderbar in die Wikipedia einbauen und nachlesen, wie NN "größte bekannte Primzahl" definiert hat.
- oder Du lieferst eine mehr oder weniger anerkannte Definition, wie "bekannte Primzahl" zu definieren ist, sodass man dann überprüfen kann, ob die so definierte Menge aller bekannten Primzahlen tatsächlich endlich ist. Die Electronic Frontier Foundation verwendet für ihren Preis eine Definition; das sind aber Wettbewerbsregeln, die keine mathematische Definition sind!
- Die dritte Möglichkeit ist, eine Abstimmung zu organisieren, in der wir gemeinsam über verschiedene Formulierungen abstimmen. Solche Abstimmungen sind natürlich kein Beweis, aber ein in der Wikipedia üblicher Vorgang. Damit kann man zumindest feststellen, ob "aus für die meisten Menschen einsichtigen und trivialen logischen Gründen, stets und immer eine größte bekannte Primzahl gibt". Abstimmen dürfen leider nur namentlich angemeldete Wikipedianer; anmelden kannst Du aber immer noch nachholen.
- Ich hoffe, die Situation ist so weit klar für Dich; ich werde jetzt für zwei Wochen auf Urlaub fahren und kann daher in dieser Zeit nicht mehr miteditieren. --NeoUrfahraner 19:37, 5. Jun 2005 (CEST)
- Dein wohlverdienter Urlaub wird Dir sicherlich viel Zeit zum nachdenken über die Primzahlen lassen. Danach aber erwarte ich eine klare Auskunft zum Thema: "PS: Zur Erinnerung: Ausgangspunkt dieser Diskussion war das Thema größte bekannte". Ist doch Ehrensache für Dich, oder ? Hans Rosenthal (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Ich weiß jetzt nicht recht, worüber Du klare Auskunft von mir haben willst. Ich hätte aber gerne klare Auskunft von Dir, wie eine exakte Definition von bekannte Primzahl aussehen soll. Ist doch Ehrensache für Dich, oder? --NeoUrfahraner 11:30, 21. Jun 2005 (CEST)
- Ehrensache! Die exakte Definition von "bekannte Primzahl" ist: Eine Zahl, welche der _Definition_ des Begriffs "Primzahl" genügt. (Das schließt natürlicherweise ihre _Bekanntheit_ ein, ansonsten sie nicht der Definition genügen könnte.) Allerdings war mein Ausgangspunkt nicht der Begriff der "bekannten" Primzahl, sondern der "größten bekannten" Primzahl. Das ist etwas anderes. Aber auch hierfür gebe ich eine exakte Definition: Die größte bekannte Primzahl ist stets diejenige, welche den Zahlenwert jeder zuvor veröffentlichten Primzahl übersteigt. Eine verfeinerung dieser Definitionen ist doch Ehrensache für Dich, oder... Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- So einfach ist das nicht. Definiere n als die kleinste Primzahl größer als . Dann ist n eine eindeutig bestimmte Zahl, die "der Definition des Begriffes Primzahl genügt", aber im allgemeinen Verständnis des Wortes nicht bekannt.--Gunther 08:27, 26. Jun 2005 (CEST)
- Das erinnert mich an das alte Spiel: Sei etwas schwarz. Nun definiere schwarz als weiß. Dann ist weiß schwarz. Und schwarz weiß. Und so weiter... Auf solche Diskussionen werde ich mich tunlichst _nicht_ einlassen. Bitte gehe direkt und ohne Umwege auf meine Definitionen ein. Oder formuliere bessere. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Noch ein letzter Hinweis: Definitionen in der Mathematik beziehen sich nicht auf Einzelfälle ("Definiere n als die kleinste Primzahl größer als..."), sie schaffen vielmehr den Grund, auf dem die allgemeinen Prinzipien der Mathematik aufbauen.
- Ich habe Dir ein Beispiel einer Zahl n genannt, auf die Deine Definition zutrifft, die aber nicht als bekannt angesehen wird. Leider kann ich Deinen tiefsinnigen Ausführungen zum Thema Schwarz und Weiß nicht entnehmen, welchen Teil dieser Behauptung Du bestreitest und weshalb.--Gunther 09:12, 26. Jun 2005 (CEST)
- "Ich habe Dir ein Beispiel einer Zahl n genannt, auf die Deine Definition zutrifft, die aber nicht als bekannt angesehen wird." Eine Zahl, genauer Primzahl, die nicht als _bekannt_ angesehen wird, hat mit meiner Definition nichts zu tun, da meine Definition von "bekannten Primzahlen" und "größten bekannten" Primzahlen handelt. Bitte verstehe mich recht: Wir reden hier nicht über Linsen und Erbsen, sondern über die Begriffe "bekannte" und "größte bekannte" Primzahl. Dein Beispiel hält meiner Definition nicht stand, sowenig wie meine Definition auf Dein Beispiel zutrifft. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Kernbegriffe sind "bekannt" und "größt"; und kannst Du Deine Zahl "n" ausschreiben? Narürlich nicht, sie ist ja _unbekannt_. Meine Definition aber handelt nur von _bekannten_ Größen.
- Ah, mein Fehler: Neo hatte Dich aufgefordert, "bekannt" zu definieren, und ich dachte, Du wolltest das tun.--Gunther 09:57, 26. Jun 2005 (CEST)
- Hans, Du hast es bis jetzt nicht geschafft, eine Definition von "bekannt" zu geben. "bekannt" ist kein "Kernbegriff" (was meinst Du genau damit?) und im Gegensatz zur Größer-Relation ist mir keine mathematisch exakte Definition dafür bekannt. Das von Gunther gegebene Beispiel kleinste Primzahl größer als genügt offensichtlich Deiner Definition von "bekannter Primzahl", denn nach Deiner Definition ist ja jede Primzahl "bekannt". Umgekehrt bezweifle ich aber, dass es vor 1588 eine größte bekannte Primzahl gab (siehe The Largest Known Prime by Year). Was war denn im Jahr 1492 die größte bekannte Primzahl? Wenn Du nicht in der Lage bist, "bekannt" zu definieren, werde ich die von mir erwähnte dritte Möglichkeit einleiten und vorschlagen, eine Abstimmung darüber zu machen, ob wir bei der derzeitigen Formulierung bleiben oder die Formulierung so dass es stets eine größte bekannte Primzahl gab, seitdem sich die Menschen mit Primzahlen befassen. Derzeit ist es ... streichen und durch die Version vom 2. Mai 2005 Die derzeit größte bekannte Primzahl ist ... ersetzen. --NeoUrfahraner 09:11, 27. Jun 2005 (CEST)
- Ich habe sehr verständliche Definitionen sowohl von "bekannte Primzahl" als auch von "größte bekannte Primzahl" auf dieser Seite gegeben. Wiederholung: Eine "bekannte Primzahl" ist eine Zahl, die der Definition der "Primzahl" genügt und im Internet zur Verifizierung verfügbar ist. Eine "größte bekannte Primzahl" ist eine Zahl, die "der Definition der "Primzahl" genügt" und größer als jede zuvor bekannte Primzahl ist und im Internet zur Verifizierung verfügbar ist. Diese Definitionenen sind vollständig. Mehr kann ich nicht für Dich tun. (Ich drehe mich hier im Kreis: "Bekannt" bedeutet "nachvollziehbar" -- und "größtbekannt" bedeutet nichts anderes.) Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Eine letzte Erläuterung: Wenn ich sage, daß die 3 mir "bekannt" ist, dann muß ich die Drei hinschreiben können: 3 oder drei. Ich muß auch diese Tatsache anderen mitgeteilt haben, die mich bestätigen. Es ist hingegen nicht hinreichend einfach zu behaupten: "Es gibt eine größere Primzahl als die 2."
- Ich habe geschrieben: "Es ist hingegen nicht hinreichend einfach zu behaupten: "Es gibt eine größere Primzahl als die 2."" Für diese falsche und dumme Aussage sollte ich mich *zaunpfählen* lassen ! Ich nehme diesen Unsinn zurück. Natürlich ist es hinreichend zu behaupten: "Es gibt eine größere Primzahl als die 2." Euklid mag sich im Grabe drehen ob meines Hirnrisses. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Entschuldigung bei allen Lesern. Ich werde mich künftig auf die "123" beschränken.
- Natürlich drehst Du Dich im Kreis. "im Internet zur Verifizierung verfügbar" ist keine mathematische Definition. Was war denn die größte bekannte Primzahl, als es noch kein Internet gab? Was bedeutet "hinschreiben"? In welchem Sinn ist "hingeschrieben"? Da steht ja nur eine Formel, mit der man die Zahl berechnen kann. Welche Formeln sind erlaubt, damit eine Zahl als bekannt gilt, welche Formeln sind nicht erlaubt? Was war denn die größte bekannte Primzahl für Fermat, der geglaubt hat, dass alle Fermat Zahlen Primzahlen wären? Und nochmals, was war denn im Jahr 1492 die größte bekannte Primzahl? --NeoUrfahraner 2. Jul 2005 08:32 (CEST)
- ""im Internet zur Verifizierung verfügbar" ist keine mathematische Definition.". Ich weiß, ich habe auch an keiner Stelle behauptet, daß "bekannt" oder "verifizierbar" ein mathematischer Begriff sei. Ich habe versucht, eine sprachliche Erklärung des Begriffs "bekannt" zu geben, nicht mehr und nicht weniger. Jetzt bist Du wieder an der Reihe. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Ohne mathematische Definition von bekannt ist aber die Aussage "daß es stets eine "größte bekannte" Primzahl gibt" sinnlos. Es herrscht zwar heute Einigkeit darüber, dass als "bekannt" anzusehen ist; es kann aber durchaus sein, dass jemenad eine neue Formel für Primzhalen findet, die manche Leute als "bekannte Primzahlen" anerkennen, andere Leute aber nicht. Schon bei der Frage, ob M4253 jemals die größte bekannte Primzahl war, gibt es unterschiedliche Interpretationsmöglichkeiten. "Does a machine result need to be observed by a human before it can be said to be 'discovered'?", siehe The Largest Known Prime by Year --NeoUrfahraner 2. Jul 2005 18:50 (CEST)
"Does a machine result need to be observed by a human before it can be said to be 'discovered'?" -- Yes, absolutely. As long as machines are constructed ("discovered") by human beings, all their results can only be "discovered" or known by the latter. Since the term "observance" can only be attributed to "observers", there is always an entity needed that "observes" or controlles. Once the machines will have taken over the power from human beings, the humans will have to revise their understanding of what "known" means. But it`s still a long way to go before that happens... (Kurzfassung: Menschliche Kategorien von "Wahrnehmung", "Bewußtsein" oder "Wissen" dürfen nicht auf Maschinen angewendet werden. Maschinen wissen nichts. Sie funktionieren nach den Anweisungen der Menschen. Im Guten wie im Schlechten. But this is just a matter of course...)
Erklärungsversuch in drei Schritten:
1. Eine "Primzahl" ist eine Zahl, die beliebigen deterministischen Primzahltests genügt. 2. Eine "bekannte" Primzahl ist eine Zahl, die beliebig viele Menschen verifiziert haben. 3. Eine "größte" bekannte Primzahl ist eine Zahl, deren Wert noch nicht übertroffen ist.
Von unten nach oben gelesen (also 3. --> 2. --> 1.) ist alles in dieser Erklärung von "größte bekannte Primzahl" enthalten (eher mehr als zuwenig).
Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: "Ohne mathematische Definition von bekannt ist aber die Aussage "daß es stets eine "größte bekannte" Primzahl gibt" sinnlos." Warum? Die größte bekannte Primzahl kann jeder mit dem Internet verbundene Leser nachlesen. Auch ohne eine "mathematische" Definition des Begriffs "bekannt" zu haben, weil es eine solche "mathematische Definition" auch nicht gibt. Es gibt bisher nur sprachliche "Erklärungen" des Begriffs "bekannt". Mehr ist auch gar nicht erforderlich in diesem Zusammenhang. Freilich, wer eine "mathematische" Definition geben kann, der soll sie geben. (Nötige Rechtschreibkorrekturen werden natürlich folgen.)
- Und was war also im Jahr 1492 die größte bekannte Primzahl? --NeoUrfahraner 4. Jul 2005 06:53 (CEST)
- Falls Christoph Kolumbus in seinen Geheimberichten an die Spanische Krone nicht geirrt noch geschwindelt hat, dann war die größte bekannte Primzahl im Jahr 1492 die 391-stellige Zahl 1492^123+1321. Kolumbus behauptete, diese Zahl bei seiner Ankunft im Strandsand auf Guanahani gelesen und aufgeschrieben zu haben. Aber das ist unter Historikern sehr umstritten. Unter Mathematikern auch. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
Ok, genug rumgealbert. Ich denke, es herrscht Einigkeit, dass von den drei Zahlen
- (A) 141421356237309504880168872420969807856967187538001
- (B)
- (C)
- (D) nextprime( )
die Zahlen A, B und C "bekannt" sind, während D "unbekannt" ist. Damit ist auch klar, dass es nur eine grösste bekannte Primzahl geben kann, solange man nicht Ausdrücke (z.B. des Typs B oder C) kennt, mit denen sich beliebig grosse Primzahlen erzeugen lassen. Wird einer dieser Punkte von einer der Seiten bestritten?--Gunther 6. Jul 2005 00:55 (CEST)
- "Wird einer dieser Punkte von einer der Seiten bestritten?" -- Ja, ich bestreite, daß Kolumbus (nach Absprache mit Konrad) das Wort "grösste" verwendet hätte. Aber das ist unter den sogenannten "Kultusministern" (die von der Rechtschreibung soviel Ahnung haben wie der Teiler vom Multiplikator) sehr umstritten... Unter Sprachkennern auch. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Mein ß funktioniert gerade nicht. Es soll aber auch Länder geben, die so etwas gar nicht verwenden...--Gunther 6. Jul 2005 09:36 (CEST)
- In diesen vier Faellen sind wir uns mehr oder wenig einig (Wie lauten eigentlich die letzten 10 Dezimalstellen von (C)?). Was ist damit aber über die verbleibenden unendliche vielen Faelle gesagt? Angenommen, jemand findet eine Funktion f(n1,...,nk), die immer eine beliebig große Primzahl liefert und zur Berechnung 1s/1 h/1d/1 Jahr/1 Jahrhundert erfordert? Ab welcher Komplexität sind wir uns einig, dass diese Formel eine "bekannte" Zahl liefert? Und nochmals zu meiner Frage: Was war also im Jahr 1492 die größte bekannte Primzahl? --NeoUrfahraner 6. Jul 2005 07:34 (CEST)
- Bei Beispiel (C) ging es mir darum, dass niemand jemals die Dezimaldarstellung dieser Zahl vollständig aufschreiben können wird, sie aber trotzdem "bekannt" ist. Und es ist ebenfalls klar, dass es eine grosse Grauzone gibt. Mein Tip für die letzten zehn Stellen von C wäre übrigens 7850449923.--Gunther 6. Jul 2005 09:36 (CEST)
- Bei der derzeitigen Formulierung ("stets") ist aber gerade diese Grauzone das Problem; die Formulierung, wie sie bis Anfang Mai 2005 war, ist unbestritten. --NeoUrfahraner
- Mir ist jetzt noch ein anderes Argument eingefallen, um die Problematik klarzumachen: Analog zu "dass es stets eine größte bekannte Primzahl gab, seitdem sich die Menschen mit Primzahlen befassen" muss natürlich auch gelten "dass es stets eine kleinste natürliche Zahl gab, von der man nicht weiß, ob sie Primzahl ist oder nicht". Von weiß man beispielsweise nicht, ob diese Zahl prim ist, vgl. Fermat Factoring Status. Damit wir nicht über das Jahr 1492 diskutieren müssen: welches ist denn nun heute die kleinste natürliche Zahl, von der man nicht weiß, ob sie prim ist? --NeoUrfahraner 10:14, 12. Jul 2005 (CEST)
Nebenrechnung (2. Versuch)
In Wladyslaw Narkiewicz, The Development of Prime Number Theory, Springer-Verlag Berlin 2000, Seite 114 findet sich die Aussage
- für
Als Quelle ist H. Harborth, H.J.Kanold, A.Kemnitz, Abschätzung der Primzahlfunktion mit elementaren Methoden, Elem. Math. 36 (1981) 167–170, angegeben.
Damit ist
Mit und kann man den zweiten Term vernachlässigen und erhält
"Eigenschaften von Primzahlen" (privat für ROHA in Ermangelung einer Benutzerdiskussionsseite *zaunpfahl*)
Die Eigenschaften der Primzahlen sind durch die Definition nicht vollständig beschrieben. In der üblichen Verwendung des Wortes "Eigenschaft" zählt dazu auch jede Aussage, die auf Primzahlen zutrifft, auch wenn sie nicht Teil der Definition ist, z.B. entweder gleich 2 oder ungerade zu sein.--Gunther 19:49, 13. Jun 2005 (CEST)
- Du hast recht, Gunther. Die "Eigenschaften der Primzahlen sind durch die Definition nicht vollständig beschrieben". Ich hätte schreiben sollen: "sind in der Definition vollständig enthalten". Das bedeutet etwas anderes. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: "*zaunpfahl*" ist mir immer noch ein Rätsel...
- *zaunpfahl* hieß, dass es praktisch wäre, wenn Du Dich anmelden würdest und damit eine Benutzerdiskussionsseite hättest.--Gunther 13:51, 26. Jun 2005 (CEST)
- Danke für die Erklärung. Ich habe meine Gründe, mich nicht anzumelden. Ich werde später darauf zurückkommen. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
neue Einleitung
@MKI: Deine Änderung finde ich weniger gut. Im ersten Satz erwarte ich Eine Primzahl ist .... Mein Vorschlag: Setze Deine durchaus sinnvollen Ergänzungen hinter die vorher bestehende Einleitung. -- tsor 15:42, 24. Jun 2005 (CEST)
- Zum einen hielt ich es für überflüssig, dass in der alten Version ein und die selbe Definition (nur ein wenig anders formuliert) zweimal kurz hintereinander im Artikel auftauchte. Außerdem soll die Einleitung -- wie überall -- einem möglichst breiten Leserfeld zugänglich sein. Das bedeutet, dass wir lieber keine mathematisch exakte (und damit mathematisch formulierte) Definition in der Einleitung bringen, sondern wir dort eher eine Ahnung vermitteln sollten. Die von mir gewählte Fomrulierung multiplikative Grundbausteine der natürlichen Zahlen mag nicht perfekt sein, aber aus den gerade genannten Gründen halte ich diese in der Einleitung für wesentlich besser als die exakte Definition. Wenn jemand die exakte Defintion wissen möchte, dann schaut er doch sowieso sofort unter dem entsprechenden Abschitt nach, der direkt im Anschluss steht und damit niemandem entgehen sollte.--MKI 15:57, 24. Jun 2005 (CEST)
- "Multiplikative Grundbausteine" ist nicht so unmittelbar verständlich. Allerdings finde ich es gut, in der Einleitung zu beschreiben, worin die Bedeutung des Begriffes liegt, das ist mMn genauso wichtig wie eine präzise Definition. Bei einer Definition wie "genau zwei Teiler" könnte man fragen: "Und wie heißen Zahlen mit genau drei Teilern?"--Gunther 16:05, 24. Jun 2005 (CEST)
- Zahlen mit genau drei Teilern heißen Quadrate von Primzahlen :)
- Bevor wir über die konkrete Form der Einleitung weiterdiskutieren, möchte ich einen grundlegenden Punkt abklären: Sind wir uns darüber einig, dass die exakte Definition nichts in der Einleitung zu suchen hat? (Nochmal kurz die Begründung: Einleitung soll einen verständlichen Überblick schaffen; die präzise Definition kommt ohnehin einen Abschnitt später.)--MKI 17:58, 24. Jun 2005 (CEST)
- "Multiplikative Grundbausteine" ist nicht so unmittelbar verständlich. Allerdings finde ich es gut, in der Einleitung zu beschreiben, worin die Bedeutung des Begriffes liegt, das ist mMn genauso wichtig wie eine präzise Definition. Bei einer Definition wie "genau zwei Teiler" könnte man fragen: "Und wie heißen Zahlen mit genau drei Teilern?"--Gunther 16:05, 24. Jun 2005 (CEST)
- Mit dem ersten Satz soll der Leser wissen, worum es geht. Da kann man an Stelle einer exakten Definition auch mal eine "schwammige" wählen. Also mal mein Vorschlag für die ersten beiden Sätze: Primzahlen sind natürliche Zahlen mit bestimmten mathematischen Eigenschaften. Eine Primzahl ist nur durch 1 und sich selbst teilbar. Danach kann MKIs Ergänzung folgen. -- tsor 18:19, 24. Jun 2005 (CEST)
- Vorschlag für eine Einleitung. Eine kurze und verständliche Einleitung zum Artikel
"Primzahlen" könnte auch so aussehen: "Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Teilern. Die zehn kleinsten Primzahlen sind 2, 3, 5, 7, 11, 13, 17, 19, 23, 29." Der Abschnitt "Formale Definition" müßte natürlich angepaßt werden. Alles weitere der jetzigen Version der Einleitung könnte in einen neuen Abschnitt "Geschichte" verschoben werden. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Jo, kommt recht gut hin. Vielleicht etwas abgewandelt: "Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Teilern, nämlich 1 und die Zahl selbst. Die zehn kleinsten Primzahlen sind 2, 3, 5, 7, 11, 13, 17, 19, 23, 29." -- tsor 10:56, 26. Jun 2005 (CEST)
- "die Zahl" -> "der Zahl", und "zehn" raus (zählen kann der Leser selbst, und die Zehn hat keine tiefere Bedeutung).--Gunther 11:06, 26. Jun 2005 (CEST)
- Jo, kommt recht gut hin. Vielleicht etwas abgewandelt: "Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Teilern, nämlich 1 und die Zahl selbst. Die zehn kleinsten Primzahlen sind 2, 3, 5, 7, 11, 13, 17, 19, 23, 29." -- tsor 10:56, 26. Jun 2005 (CEST)
- "Eine Primzahl p ist eine natürliche Zahl mit genau zwei natürlichen Teilern: 1 und p. Die kleinsten Primzahlen sind 2, 3, 5, 7, 11, 13, 17, 19, 23, 29."
- Besser so ? Das Wort "genau" sollte verlinkt (kenne keinen deutschen Wiki-Link) und dort erklärt werden, da es mathematisch bedeutsam ist. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Entweder ad hoc: "Dabei bedeutet "genau zwei", dass es auch nicht mehr als diese zwei geben darf."
- Oder vielleicht wirklich genau (Mathematik) als BKS für "genau n" und "genau dann, wenn" (und jeweilige Varianten).
- Oder eben doch: "eine natürliche Zahl größer als eins, die durch keine anderen natürlichen Zahlen als durch 1 und p teilbar ist."
- --Gunther 11:45, 26. Jun 2005 (CEST)
- Der erste Satz sollte doch eher allgemeinverständlich sein - evtl. auf Kosten der mathematischen Exaktheit. Daher kann man "genau" einfach als umgangssprchlich verständlich vorraussetzen und nicht verlinken. Die math. präzise Formulierung erfolgt weiter unten. -- tsor 11:50, 26. Jun 2005 (CEST)
- Ich fürchte, gerade in diesem Artikel sind ausreichend Erbsenzähler zu erwarten, die das dann unbedingt korrigieren (lassen) müssen. Ansonsten: siehe dritter Vorschlag oben, da tritt das Problem gar nicht erst auf.--Gunther 11:54, 26. Jun 2005 (CEST)
- Betrachtet alle meine Beiträge als Vorschläge. Bessere Vorschläge sind mir immer willkommen. (Im Augenblick scheint mich jemand ganz furchtbar sabotieren zu wollen.) Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Übertreib' mal nicht. Dass mir die Definition mit "genau zwei Teiler" nicht gefällt, kannst Du schon oben in meinem Beitrag von 16:05, 24. Jun nachlesen, da warst Du noch gar nicht beteiligt. Ich hatte mir schon überlegt, Deinen Vorschlag einfach in den Artikel zu setzen, aber dann hast Du auf den Erklärungsbedarf bei "genau" hingewiesen. Und den unbedarften Leser gleich im ersten Satz auf einen anderen Artikel zu verweisen, kommt mir wirklich nicht besonders einladend vor.--Gunther 12:17, 26. Jun 2005 (CEST)
- Gunther, es kommt überhaupt nicht darauf an, ob Dir "die Definition mit "genau zwei Teiler" nicht gefällt". Bei Definitionen kommt es auf Nützlichkeit, Korrektheit und Widerspruchsfreiheit an. Und mehr nicht. (Na ja, vielleicht auch auf Eleganz...). Wann jemand sich an einer Diskussion beteiligt, ist ebenso irrelevant. Es kommt nur darauf an, ob er etwas Nützliches beizutragen hat. Und zuletzt kommt es am wenigsten darauf an, wann Du Dir "überlegt" hast, irgendetwas in einen Wiki-Artikel zu übernehmen oder nicht. Solange die Wikipedia eine "freie Enzyklopädie" ist, sollte in ihr die Vernunft walten, nicht das Ressentiment. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Zum nicht sachbezogenen Teil siehe Benutzer Diskussion:Gunther#Diskussion:Primzahl, das gehört nicht hierher.
- Zur Sache: Gibt es mehrere äquivalente Definitionen, stellt sich durchaus die Frage, welche "in einem höheren Sinne die richtige" ist. Das ist natürlich nicht exakt zu fassen, aber mMn sind es die Bedeutung und die Zusammenhänge jenseits der Formeln, die die Mathematik ausmachen. In aller Regel sind es andere Eigenschaften der Primzahlen, die relevant sind, als ausgerechnet die Tatsache, dass die Zahl ihrer Teiler gleich 2 ist.--Gunther 13:05, 26. Jun 2005 (CEST)
- Ich bin immer noch eher für eine Formulierung a la: Eine Primzahl ist eine natürliche Zahl mit zwei von einander unterscheidbaren Teilern. Das "Eine Primzahl ist eine natürliche Zahl, die nur durch Eins und sich selbst teilbar ist hat den Nachteil, das man semantisch argumentieren kann, daß die Eins und das sich Selbst identisch sein kann, so das die Eins aufgrund der Semantik auch eine Primzahl sein müßte.
- Nun hat die Semantik in der Mathematik nichts verloren. Aber das wissen ja möglicherweise viele Leute nicht. Als ich in der Grundschule von den Primzahlen erfahren habe, haben viele meiner Mitschüler so argumentiert, und nicht umsonst gab (und gibt es vielleicht immer noch) im USENET Diskussionen und Anfragen darüber, ob es sich bei der Eins um eine Primzahl handelt. Das ist Folge einer schwammigen, wenn auch nicht falschen, Definition. --Arbol01 13:19, 26. Jun 2005 (CEST)
- Eine mathematische Beschreibung, die die den Primzahlen zugrundelegende Idee sehr gut wiedergibt, ist Die Primzahlen sind die Atome im Teilerverband der natürlichen Zahlen. Dabei wird aber einige Vertrautheit mit Verbänden vorausgesetzt, weshalb die Beschreibung als Definition unbrauchbar ist. Ich würde mir aber wünschen, dass es uns gelänge, die Intuition hinter dieser Beschreibung in der Einleitung erahnbar zu machen. Meine Formulierung multiplikative Grundbausteine ist ein Versuch hierzu. Vollends zufrieden bin ich damit allerdings nicht.
- Bezüglich der Varianten genau 2 natürliche Teiler und nur durch 1 und teilbar gab es weiter oben schon eine kurzen Gedankenaustausch. Die zweite Variante wurde favorisiert, ich denke daran sollten wir uns (in der Definition, nicht in der Einleitung) halten. Nach wie vor denke ich, dass die Einleitung keine Definition enthalten sollte, dafür aber die zugrundeliegende Idee.--MKI 13:25, 26. Jun 2005 (CEST)
- Mit mindestens derselben Berechtigung wie den Begriff Verband könnte/sollte man erwähnen, dass die natürlichen Zahlen das freie kommutative Monoid auf den Primzahlen sind, oder dass die freie abelsche Gruppe auf den Primzahlen ist. Aber "multiplikative Grundbausteine" ist ja auch in dieser Beschreibung zutreffend.--Gunther 13:35, 26. Jun 2005 (CEST)
- Ja, die wirkliche Idee hinter den Primzahlen ist, dass es die multiplikativen Grundbausteine sind, solange man diese Formulierung richtig interpretiert. Dieser Gedanke lässt sich auf mehrere Arten auf "mathematisch" übersetzten, wobei mir persönlich die verbandstheoretische am meisten zusagt, da die Charakterisierung der Primzahlen damit sehr prägnant ausfällt. Aber auch Die Primzahlen sind das eindeutig bestimmte minimale Erzeugendensystem des Monoids der natürlichen Zahlen bezüglich der Multiplikation. gefällt mir ganz gut. Sollen wir es in den Artikel mit aufnehmen, oder wird das zuviel?--MKI 13:53, 26. Jun 2005 (CEST)
- Nicht als Definition, höchstens unter den Eigenschaften. Denn der Gruppenisomorphismus ist auch für die Vorstellung manchmal extrem hilfreich: Beispielsweise fragt man sich dann, was es an der Irrationalität von noch zu beweisen gibt...--Gunther 16:55, 26. Jun 2005 (CEST)
- (Bearbeitungskonflikt, Antwort auf Arbol 13:19, 26. Jun) Dieses Problem kann man ja formal durch vermeiden, die inhaltliche Rechtfertigung für diese Festlegung erfolgt durch die Eindeutigkeit der Primfaktorzerlegung. Etwas polemisch gesagt: Die Definition mit den zwei Teilern ist die Ausrede für diejenigen, die den eigentlichen Grund nicht nennen wollen, weshalb 1 keine Primzahl ist.--Gunther 13:27, 26. Jun 2005 (CEST)
- Wenn man das größer Eins dazuschreibt, ist das semantische Problem beseitigt. Was meinst Du mit eigentlichem Grund? Weil die Primzahldefinition sonst nicht eindeutig ist? Weil Eins ein neutrales Element (bezüglich der Multiplikation) ist? --Arbol01 13:38, 26. Jun 2005 (CEST)
- Jetzt bin ich aber ganz neugierig: Was ist denn der "eigentliche Grund", den manche dafür "nicht nennen wollen," daß "1 keine Primzahl ist" ? Und worin besteht denn "die Ausrede" derjenigen, welche heutzutage die Eins nicht mehr als Primzahl betrachten ? Sind denn die heutigen Zahlentheoretiker so feige Schlawiner, daß sie sich in "Ausreden" flüchten müssen, sobald jemand sie fragt: "Warum ist die Zahl Eins keine Primzahl?" ? Wo doch die Antwort für jeden greifbar (und auch in der Wikipedia lesbar) auf der Hand liegt. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Steht doch oben schon: Eindeutigkeit der Primfaktorzerlegung. (Tut mir leid, wenn Ihr jetzt mehr erwartet habt.)--Gunther 14:08, 26. Jun 2005 (CEST)
- Warum hast Du`s dann so spannend gemacht. Das ist keine "Ausrede" von Mathematikern, "die den eigentlichen Grund nicht nennen wollen", sondern Pragmatismus. Mathematiker sind zuallererst Pragmatiker, was ihnen nützlich und sinnvoll erscheint, das nehmen sie auf und verfeinern es, falls möglich. Das nennt man am Ende "Konvention". Und keiner von ihnen würde sich deshalb schämen oder grämen oder in Verlegenheit geraten. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Das Thema "Konventionen in der Mathematik" könnte Bände füllen. PPS: Braucht Dir aber gar nicht leidzutun...
- Das klingt gerade nach einem kleinen Missverständnis: Nicht die eindeutige Primfaktorzerlegung ist die Ausrede, sondern die Definition mit den zwei Teilern, die nur erfunden wurde, damit man eine kurze Erklärung hat, wieso die 1 keine Primzahl ist. Meinetwegen könnte man auch definieren: Die Menge der Primzahlen ist die eindeutig bestimmte Teilmenge der natürlichen Zahlen, für die gilt, dass sich jede natürliche Zahl auf im wesentlichen eindeutige Weise als Produkt von Zahlen aus dieser Menge schreiben lässt. Das wäre für meinen Geschmack wesentlich besser als die Fixierung auf die Zahl 2, die ja für die ganzen Zahlen ohnehin durch 4 ersetzt werden muss (ganz zu schweigen von 8 bzw. 12 für die gaußschen Zahlen bzw. Eisenstein-Zahlen).--Gunther 14:47, 26. Jun 2005 (CEST)
- Ich habe es anders gemeint: Für Euler war die Eins ganz natürlicherweise eine Primzahl. Zu seiner Zeit (im 18ten Jahrhundert) spielte die "Eindeutigkeit der Primfaktorzerlegung" keine wesentliche Rolle. Für die Mathematiker des 19ten Jahrhunderts jedoch wurde die "Eindeutigkeit" sehr relevant. Deshalb ließen sie die vormalige Primzahl Eins fallen. Der Verlust war denkbar klein, der Gewinn für die Zahlentheorie aber außerordentlich groß. Das war eine ganz pragmatische Entscheidung. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Daß man daraufhin eine passende Definition für die um die Eins verringerte Menge der Primzahlen gesucht und gefunden hat, das zeugt abermals vom Pragmatismus (d.h. vom Nützlichkeitsdenken) der Mathematiker. Aber diese neue Definition der Primzahlen ("mit den zwei Teilern") hat der "alten" Mathematik nichts genommen, nützt uns aber bis auf den heutigen Tag.
- Sorry, aber "keine wesentliche Rolle" kaufe ich Dir nicht ab. Z.B. hat doch Euler gezeigt, dass jede gerade vollkommene Zahl die Form hat, und das wird er wohl kaum ohne eindeutige Primfaktorzerlegung geschafft haben. Ebenso stammt das Eulerprodukt von ihm, und das ist i.w. die eindeutige Primfaktorzerlegung.--Gunther 16:28, 26. Jun 2005 (CEST)
- Nebenbei könnte man auch definieren: Eine Primzahl ist eine natürliche Zahl p=a+b, bei der für jedes a und b gilt, das der ggT(a,b)=1 ist.
- Das könnte man sicher noch schöner formulieren. SCNR. --Arbol01 16:41, 26. Jun 2005 (CEST)
- Diese Definition ist aber mit Sicherheit "in einem höheren Sinne falsch" :-) --Gunther 16:55, 26. Jun 2005 (CEST)
- "The number 1 is a special case which is considered neither prime nor composite (Wells 1986, p. 31). Although the number 1 used to be considered a prime (Goldbach 1742; Lehmer 1909; Lehmer 1914; Hardy and Wright 1979, p. 11; Gardner 1984, pp. 86-87; Sloane and Plouffe 1995, p. 33; Hardy 1999, p. 46), it requires special treatment in so many definitions and applications involving primes greater than or equal to 2 that it is usually placed into a class of its own." Aus http://mathworld.wolfram.com/PrimeNumber.html Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
Ihr schweift völlig vom Thema ab. Nochmals: Es geht um einen Einleitungssatz, der dem Leser sofort einen ungefähren Anhalt gibt, um was es im Artikel geht. Dieser Einleitungssatz darf ruhig etwas "unscharf" oder unpräzise sein. Weiter unten wird dann alles exakt definiert und erklärt (auch dass "1" keien Primzahl ist). Aber für die Einleitung reicht es aus zu schreiben: "Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Teilern, nämlich 1 und der Zahl selbst. Die kleinsten Primzahlen sind 2, 3, 5, 7". Damit ist ja auch schon angedeutet, dass "1" keine Primzahl ist. -- tsor 17:21, 26. Jun 2005 (CEST)
- Nein, da bin ich anderer Meinung. Das ist doch bereits die exakte Definition, die wir in der Einleitung gerade nicht bringen wollten.--MKI 18:04, 26. Jun 2005 (CEST)
- Umso besser. Wichtig ist: Der Einleitungssatz sollte den "Oma-Test" bestehen. Das tut dieser. Was die exakte Definition ist, darüber gehen die Meinungen ja wohl auseinander, wenn man sich die Versionen dieses Artikels mal ansieht. -- tsor 18:46, 26. Jun 2005 (CEST)
- Nein, die Einleitung sollte einem möglichst breiten Leserfeld eine Intuition vermitteln, worum es geht. Und genau das ist bei den allgemein üblichen Definitionen einer Primzahl (genau 2 Teiler bzw. größer 1, nur Teiler 1 und ) nicht der Fall. Ein Leser ohne Vorkenntnisse kann nach einer solchen Einleitung vielleicht Zahlen mechanisch auf Primalität überprüfen, aber warum man ausgerechnet für solche Zahlen einen eigenen Begriff definiert, erschließt sich ihm nicht. Meine Meinung ist aber: Nach der Einleitung sollte ein Leser optimalerweise in der Lage sein, auf die Frage Warum interessiert man sich überhaupt für Primzahlen? eine vernünftige Antwort zu geben. Die Frage Ist 5 eine Primzahl? ist in diesem Stadium dagegen nebensächlich.
- Darum zum wiederholten Male: Wir sollten versuchen, in der Einleitung allgemeinverständlich und prägnant die zugrundeliegende Motivation zu erklären; meinen aktuellen Versuch halte ich nicht für perfekt. Die exakte Definition trägt zu diesem Punkt jedoch überhaupt nichts bei und gehört deshalb dorthin, wo sie jetzt ist, und nicht in die Einleitung.--MKI 22:06, 26. Jun 2005 (CEST)
- Schau Dir mal die englische Version des Artikels an. Da wird auch im ersten Satz genau gesagt, was eine Primzahl ist, analog der oben vorgeschlagenen Version. Und das ist auch richtig so. Im ersten Satz sollte immer erklärt werden: LEMMA ist ein... oder Unter LEMMA versteht man...' Schau Dir als analoges Beispiel mal einen Städteartikel an, z.B. München: München ist ... Nicht irgendwelches Geschwafel sondern eine präzise Erklärung. Und so muss es auch hier sein. Die aktuelle Version muss m.E. ersetzt werden durch den obigen Vorschlag. -- tsor 23:19, 26. Jun 2005 (CEST)
- Mathematik ist nicht München, ich halte Geschwafel in der Mathematik für extrem wichtig: Ansonsten musst Du den ersten Satz von Funktion (Mathematik) ersetzen durch: "Eine Funktion ist ein geordnetes Tripel mit , so dass es zu jedem genau ein gibt, so dass gilt."--Gunther 23:24, 26. Jun 2005 (CEST)
- Ich sehe es so ähnlich. Der Formalismus ist ein wichtiges Werkzeug der Mathematik, aber mehr nicht. Die Essenz der Mathematik liegt nicht im Formalismus.
- Meine Erfahrung ist: Um mit mathematischen Begriffen wirklich umgehen zu können, hilft purer Formalismus wenig. Vielmehr ist es notwendig, ein Gespür für die betrachteten Objekte zu entwickeln, das sich dem Formalismus entzieht. Wenn man dann weiß, worum es geht, ist der Formalismus eine geeignete Sprache, um die Gedanken geordnet und mathematisch exakt zu formulieren. Weiß man jedoch nicht, worum es geht, so hat ein übermäßiger Formalismus häufig eine erschlagende und demotivierende Wirkung.
- Der Begriff der Primzahl ist natürlich ein schlechtes Beispiel für meine Thesen, weil er jedem von uns schon lange völlig vertraut sein dürfte. Da die Einleitung aber gerade für Leute gedacht ist, denen die Primzahlen nicht so recht geläufig sind, halte ich es für richtig, der formalen Definition eine Hilfestellung für die Entwicklung einer Intuition vorauszuschicken.--MKI 02:07, 27. Jun 2005 (CEST)
- Ich stimme mit tsor vollständig überein. Trotzdem ein letzter, für Opas und Enkel verständlicher Vorschlag für eine Einleitung zum Wikipedia-Artikel über "Primzahl":
"Eine Primzahl hat keinen _echten_ natürlichen Teiler. Die ersten Primzahlen sind 2, 3, 5, 7."
Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Geht es noch (allgemein-) verständlicher und kürzer ? Ich bin ganz Ohr ! (Ich bin allerdings auch sehr ermüdet.) Natürliche Fortsetzung dieser Diskussion: Was ist denn ein "echter", und was ein "natürlicher", und was ein "Teiler" ? Aber das interessiert Opa und Enkel nicht in der Einleitung... Sie verstehen alles einfach beim Lesen !
Ohne mich ernsthaft in die Diskussion einmischen zu wollen, gehört vor den Satz mit dem multiplikativen Grundbausteinen eine Definition von Primzahlen. Was spricht denn dagegen, das, was da jetzt unter "Formale Definition" (wieso eigentlich formal?) steht, einfach ganz nach oben zu packen? --DaTroll 17:43, 10. Jul 2005 (CEST)
- Wie schon mehrfach gesagt ist meine Meinung: Die Einleitung sollte möglichst kompakt die den Primzahlen zurgundeliegende Bedeutung benennen. Eine formale Definition gehört nicht in die Einleitung.--MKI 21:08, 10. Jul 2005 (CEST)
- Und wie ich schon mehrfach gesagt habe: Ein Artikel beginnt mit "LEMMA ist ...", danach - frühestens im zweiten Satz - kommt die Bedeutung. -- 21:35, 10. Jul 2005 (CEST)
- Nachtrag: Schau Dir als Beispiel mal Gerhard Gottschalk an. -- tsor 21:37, 10. Jul 2005 (CEST)
Kompromissvorschlag
Kompromissvorschlag:
- Primzahlen sind natürliche Zahlen mit speziellen multiplikativen Eigenschaften. Sie sind in zweierlei Hinsicht die Grundbausteine der natürlichen Zahlen: Einerseits lässt sich jede natürliche Zahl auf im wesentlichen eindeutige Weise als Produkt von Primzahlen schreiben, andererseits sind sie gerade diejenigen Zahlen, die nicht Produkt kleinerer natürlicher Zahlen sind.
Ist das für alle Seiten akzeptabel?--Gunther 12:19, 17. Jul 2005 (CEST)
- Mmmmhhh! Geht das nicht einfacher, und weniger geschwollen? Leben kann ich natürlich damit, weil ich weiß was Primzahlen sind, und deshalb auf die Einleitung nicht angewisen bin. --Arbol01 12:42, 17. Jul 2005 (CEST)
- Hm, dass ich mit dieser Einleitung niemanden umbringe, ist natürlich ein Lob, das nur schwer zu unterbieten ist...--Gunther 12:48, 17. Jul 2005 (CEST)
- Besser gefiele mir:
- Die Primzahlen sind die multiplikativen Grundbausteine der natürlichen Zahlen: Jede natürliche Zahl lässt sich im Wesentlichen eindeutig als Produkt von Primzahlen darstellen.
- oder
- Die Primzahlen sind die multiplikativen Grundbausteine der natürlichen Zahlen: Sie sind genau die Zahlen, die nicht Produkt kleinerer natürlicher Zahlen sind.
- Denn die einigermaßen nichtssagende Floskel ...mit speziellen Eingenschaften kommt für meinen Geschmack schon in zu vielen ersten Sätzen von Mathematikartikeln vor. Wir sollten sie, wo immer es möglich ist, vermeiden. Außerdem impliziert das vorgeschlagene auf zweierlei Hinsicht zum einen, dass die beiden Eigenschaften etwas grundverschiedenes sind und bei den Primzahlen "quasi zufällig" zusammenfallen, und zum anderen, dass alle denkbaren Interpretationen für den Begriff multiplikative Grundbausteine erschöpfend benannt wurden. Deshalb meine ich, dass wir uns auf eine einzige Eigenschaft beschänken sollten.
- Und auch dabei habe ich schon ein ungutes Gefühl (womit ich aber scheinbar ziemlich alleine dastehe): Eigentlich stellen beide Eigenschaften bereits eine Definition der natürlichen Zahlen dar, die jeweils nur noch etwas formaler ausgeführt werden müsste. Dass die anschließende formale Definition das Pferd dann von einer anderen Seite aufzäumt, erscheint mir unnatürlich. Ich habe aber nicht vor, meinen Kopf durchzusetzen, wenn hier alle einer anderen Meinung sind.--MKI 12:51, 17. Jul 2005 (CEST)
- Auch mit diesen Varianten wäre ich zufrieden. (Ich muss übrigens zugeben, dass man sich bei der zweiten etwas Mühe geben muss: 1 ist das Produkt von 0 Faktoren, von denen jeder kleiner als 1 ist.) Solange es nicht diese unsinnig Teileranzahl-gleich-2-Definition ist...--Gunther 13:10, 17. Jul 2005 (CEST)
- Diese Einleitung gefällt mit überhaupt nicht. Ich halte das für Geschwafel, mit dem meine Oma nur wenig anfangen kann. Ich meine immer noch wir müssen mit einer Definition anfangen, wie ich sie weiter oben schon erwähnt habe, also sinngemäss: Eine Primzahl ist eine natürliche Zahl, die nur durch 1 und sich selbst teilbar ist, zum Beispeil 3, 5, 11. Das ist genauso wie wir es in der Schule gelernt haben. Danach kann man meinetwegen von "multiplikativen Eigenschaften" philosophieren. Mein Senf. -- tsor 18:30, 17. Jul 2005 (CEST)
- Stimme dem zu. Gehöre halt zur "Eine Primzahl ist eine natürliche Zahl (größer 1) die genau zwei unterschiedliche natürliche Teiler besitzt"-Fraktion. --Arbol01 18:49, 17. Jul 2005 (CEST)
Kompromissvorschlag, 2. Versuch
Der Einleitungstext und der Abschnitt "Formale Definition" werden ersetzt durch:
- Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Teilern. Die kleinsten Primzahlen sind also 2, 3, 5, 7, 11, … Die fundamentale Bedeutung der Primzahlen für viele Bereiche der Mathematik beruht auf den folgenden drei Konsequenzen aus dieser Definition:
- Primzahlen lassen sich nicht als Produkt zweier natürlicher Zahlen, die beide größer als eins sind, darstellen.
- Lemma von Euklid: Ist ein Produkt zweier natürlicher Zahlen durch eine Primzahl teilbar, so ist bereits einer der Faktoren durch sie teilbar.
- Eindeutigkeit der Primfaktorzerlegung: Jede natürliche Zahl lässt sich auf im wesentlichen eindeutige Weise als Produkt von Primzahlen schreiben.
- Bereits die antiken Griechen... die historischen Anmerkungen wie bisher
- Eine natürliche Zahl größer als 1 heißt zusammengesetzte Zahl, wenn sie keine Primzahl ist. Die Zahlen 0 und 1 sind weder prim noch zusammengesetzt.
--Gunther 19:17, 17. Jul 2005 (CEST)
- Das halte ich für eine gute Einleitung. Bin dafür. -- tsor 19:37, 17. Jul 2005 (CEST)
- Da fällt mir gerade auf: Die Äquivalenz ist verlorengegangen, das ist schlecht. Wie wäre ein Satz: "Jede dieser Eigenschaften könnte auch zur Definition der Primzahlen verwendet werden", eingeschoben nach den drei Punkten?--Gunther 19:49, 17. Jul 2005 (CEST)
- Warum nicht! --Arbol01 22:57, 17. Jul 2005 (CEST)
- Gunthers Vorschlag halte ich inhaltlich für sehr gelungen. Ideal fände ich eine Einleitung in ein oder zwei Zeilen: "Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Teilern. Die kleinsten Primzahlen sind also 2, 3, 5, 7, 11, &hellip" Die weiteren Erläuterungen ließen sich vielleicht in ein oder zwei neue Abschnitte verschieben, etwa mit den Titeln: "Folgerungen und Implikationen" und "Zur Geschichte". (Ich bin einfach ein Freund sehr kurzer Einleitungen.) Aber das sind Formalien, die nichts mit den Formulierungen zu tun haben. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Das war in diesem Forum mein letzter Vorschlag Gunther betreffend, da er sich als ein Löscher auf den Diskussionsseiten erwiesen hat. Meine künftigen Beiträge werden künftig also völlig ohne Bezug auf Gunther sein. Ich werde ihn ignorieren. (Mag ihn zum Löschen anregen, noch ehe er einen guten Gedanken erfassen konnte...)
- @ROHA: Die Beiträge auf dieser Seite drehen sich doch um Primzahlen und nicht um Gunther. Insowfern kann ich mit Deinem Statement wenig anfangen. Aber ich muss ja auch nicht alles verstehen ;-) -- tsor 16:36, 20. Jul 2005 (CEST)
- Gunthers Vorschlag halte ich inhaltlich für sehr gelungen. Ideal fände ich eine Einleitung in ein oder zwei Zeilen: "Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Teilern. Die kleinsten Primzahlen sind also 2, 3, 5, 7, 11, &hellip" Die weiteren Erläuterungen ließen sich vielleicht in ein oder zwei neue Abschnitte verschieben, etwa mit den Titeln: "Folgerungen und Implikationen" und "Zur Geschichte". (Ich bin einfach ein Freund sehr kurzer Einleitungen.) Aber das sind Formalien, die nichts mit den Formulierungen zu tun haben. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Das war in diesem Forum mein letzter Vorschlag Gunther betreffend, da er sich als ein Löscher auf den Diskussionsseiten erwiesen hat. Meine künftigen Beiträge werden künftig also völlig ohne Bezug auf Gunther sein. Ich werde ihn ignorieren. (Mag ihn zum Löschen anregen, noch ehe er einen guten Gedanken erfassen konnte...)
- Ist aus meiner Sicht ok. Bau es doch mal ein. -- tsor 11:21, 20. Jul 2005 (CEST)
- Das ist nett. Meine Meinung hab ich ja oben schon ausführlich dargelegt. Ich kann mit der vorgeschlagenen Variante aber auch gut leben, zumal ich meinen Schädel nicht gegen die Meinung aller anderen durchsetzen will. Eine Kleinigkeit gibt es dennoch anzumerken: entweder: Die Primzahlen sind also 2, 3, 5, 7, 11, ... (ohne das Wort kleinsten) oder: Die kleinsten Primzahlen sind also 2, 3, 5, 7, 11. (ohne Pünktchenpünktchenpünktchen).--MKI 19:20, 20. Jul 2005 (CEST)
- Ich würde:Die Primzahlen sind also 2, 3, 5, 7, 11, ... OEIS|Nummer favorisieren. --Arbol01 19:26, 20. Jul 2005 (CEST)
- Da die Angabe der OEIS-Nummer fast schon der komplette Inhalt des Abschnitts "Die kleinsten Primzahlen" ist, habe ich das erst einmal weggelassen. Aus meiner Sicht spricht allerdings nichts dagegen, diesen Abschnitt in die Einleitung zu integrieren; groß wäre der Unterschied nun wirklich nicht.--Gunther 19:38, 20. Jul 2005 (CEST)
- Entschuldigung, ich war mir nicht bewusst, das die OEIS weiter unten aufgeführt ist, obwohl ich es gewußt haben mußte.
- Nein, die OEIS ist schon da gut, wo sie jetzt steht. --Arbol01 19:42, 20. Jul 2005 (CEST)
Sollte es statt Eindeutigkeit der Primfaktorzerlegung nicht direkt Fundamentalsatz der Arithmetik heißen? --DaTroll 19:41, 20. Jul 2005 (CEST)
- Zu spät ;-) Nein, ernsthaft: Ich habe den Vorschlag so geschrieben, wie es mir natürlich erschien. "Fundamentalsatz der Arithmetik" klingt für mich viel zu pompös. Das da hat auch mehr Google-Hits als das.--Gunther 20:00, 20. Jul 2005 (CEST)
Kann man nicht irgendwo das Betreffende mit diesem einfachen Satz sagen?:
"Jede natürliche Zahl läßt sich durch Multiplikation von Primzahlen eindeutig darstellen." Dieser Satz ist außerordentlich einfach und allgemeinverständlich auf Grundschulniveau (nicht Oma-Niveau, denn meine Oma hatte Hochschulbildung.;-)
Und als zweiten Satz dann irgendwie das mit den Atomen und den chemischen Elementen: "Also läßt sich die Menge der Natürlichen Zahlen auf die kleinere Menge (Untermenge) der Primzahlen zurückführen. Damit sind die P so etwas wie die Elemente der Zahlen.--Löschfix 19:34:33, 23. Aug 2005 (CEST)
Verständnisfragen zur neuen Einleitung (ROHA)
Wie läßt sich aus der dritten in der Einleitung erwähnten Eigenschaft
- Eindeutigkeit der Primfaktorzerlegung: Jede natürliche Zahl lässt sich auf im wesentlichen eindeutige Weise als Produkt von Primzahlen schreiben.
die Definition der Primzahlen gewinnen ? Definitionen dürfen das zu Definierende nicht als bekannt (= bereits definiert) voraussetzen. Setzt der Begriff der "Primfaktorzerlegung" nicht wenigstens den Begriff (die Definition) der "Primzahl" voraus ? (Dies bezieht sich auf die folgende Behauptung "Jede dieser Eigenschaften könnte auch zur Definition der Primzahlen verwendet werden." -- Bitte ein Beispiel für diese Behauptung angeben.) Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Steht schon oben. Die Menge der Primzahlen ist dadurch charakterisiert, dass "sich jede natürliche Zahl auf im wesentlichen eindeutige Weise als Produkt von Primzahlen schreiben lässt", d.h. ist eine Menge mit dieser Eigenschaft, dann ist genau die Menge der Primzahlen.--Gunther 00:47, 23. Jul 2005 (CEST)
Ich muß meine Frage leider wiederholen: Wie läßt sich aus dem dritten Punkt die DEFINITION der Primzahlen gewinnen ? Die Ausgangsbehauptung lautet weiterhin: "Jede dieser Eigenschaften könnte auch zur Definition der Primzahlen verwendet werden." Ich wiederhole: könnte auch zur DEFINITION der Primzahlen verwendet werden. Meine Frage hat "wesentlich" nichts mit den Eigenschaften der Primzahlen zu tun, sondern mit ihren Voraussetzungen, also ihrer DEFINITION. Ich könnte alles auch präziser, aber vielleich weniger verständlich formulieren. Will ich aber nicht. Deshalb in anderer Frageform: Wer kann aus der Behauptung "Jede dieser Eigenschaften könnte auch zur Definition der Primzahlen verwendet werden." und aus der dritten Aussage in der Einleitung eine Definition" des Begriffs "Primzahl" ableiten ? (Was eine Primzahl charakterisiert und welche Eigenschaften sie hat -- das sind zahlentheoretische Fragen. Meine Frage zielt allein auf die Definition, und das ist eine sprachliche (und logische) Frage.) Also: Wie kann jemand behaupten, "Jede dieser Eigenschaften könnte auch zur Definition der Primzahlen verwendet werden.", ohne in der Aussage
- Eindeutigkeit der Primfaktorzerlegung: Jede natürliche Zahl lässt sich auf im wesentlichen eindeutige Weise als Produkt von Primzahlen schreiben.
das _zu Definierende_ bereits zu verwenden ? Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Bitte beachtet: Es geht in diesem Punkt weder um die "Primfaktorzerlegung" noch um deren "Eindeutigkeit" -- Es geht um eine Behauptung, die aus einer abgeleiteten Eigenschaft der Primzahlen deren DEFINITION zu gewinnen glaubt.
- Man könnte Primzahlen auch so definieren: Eine natürliche Zahl heißt Primzahl, wenn sie zu der eindeutig bestimmten Teilmenge gehört, für die gilt, dass sich jede natürliche Zahl auf i.w. eindeutige Weise als Produkt von Elementen von schreiben lässt. Ist das wirklich so unverständlich?--Gunther 01:35, 23. Jul 2005 (CEST)
Ich möchte nur etwas anfügen, das einem "Konflikt" zum Opfer gefallen war: Und so etwas ist schlichtweg nicht möglich. ROHA
- Sorry, ich geb mir wirklich Mühe, aber ich verstehe Dein Problem nicht.--Gunther 02:00, 23. Jul 2005 (CEST)
Letzter Erklärungsversuch: Wenn jemand behauptet, die "Eindeutigkeit der Primfaktorzerlegung" könne "auch zur Definition der Primzahlen verwendet werden", dann liegt dieser jemand völlig falsch. (Kann jemand aus dem Begriff der "Primfaktorzerlegung" die Definition der Primzahl ableiten ? -- Ich glaube nicht.) Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- "Kann zur Definition verwendet werden" ist bewusst etwas vage. Gemeint ist damit, was ich in meinem Beitrag von 01:35, 23. Jul geschrieben habe. Das ist eine Definition des Begriffes "Primzahl", die äquivalent ist zur Zwei-Teiler-Definition.--Gunther 02:25, 23. Jul 2005 (CEST)
Manch einer, der Probleme hat, zwischen "Definitionen" und "mathematischen Sätzen" zu unterscheiden, mag vielleicht nochmals folgendes in Erwägung ziehen:
Die Bausteine der Mathematik
Die grundlegenden Bausteine der Mathematik sind
1. Definitionen: Vereinbarungen zum Gebrauch der natürlichen Sprache
2. Axiome: Auffindung und konsistente Formulierungen der Grundtatsachen
3. Sätze: Logisch korrekte Ableitungen von Aussagen aus den Axiomen
4. Offenheit: Überprüfung und Erweiterung der Punkte 1 bis 3
Auf diesem Fundament beruht die gesamte Mathematik.
Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) Motto: Löschen geht schnell. Nachdenken dauert etwas länger.
- Ok, ich geb's auf.--Gunther 03:13, 23. Jul 2005 (CEST)
Die falsche Aussage: "Jede dieser Eigenschaften könnte auch zur Definition der Primzahlen verwendet werden." sollte aus der Einleitung dieses Artikels gelöscht werden.
Begründung: Die Eigenschaften der Primzahlen setzen die DEFINITION der Primzahlen voraus.
Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Glas läßt Licht durch, Luft auch. Von den Eigenschaften des Glases zu denen der Luft zu schließen, ist ein weiter und beschwerlicher Weg.
Flachdenker sagen: Läßt Licht durch, also ein klarer Beweis für die Definition: Wenn etwas Licht durchläßt, dann ist es X. Tiefdenker hingegen sagen: Wenn etwas Licht durchläßt, dann müssen wir fragen: Welche Materialien können überhaupt Licht durchlassen ? Das bezeichnet den Unterschied zwischen den Flachdenkern und den Tiefdenkern. PPS: Was andere dazu (in Englisch) sagen: http://www.bham.ac.uk/ctimath/talum/austin/geometry/exploring/exploring.html PPS2: Von einem logischen Gesichtspunkt aus betrachtet: http://hem.fyristorg.com/ojarnef/fund/modal-logic-memo.txt
- So ganz unberechtigt ist meiner Meinung nach der Einwand von ROHA nicht. Wenn man die Primzahlen wie von Gunther vorgeschlagen definiert, nämlich als "Eine natürliche Zahl heißt Primzahl, wenn sie zu der eindeutig bestimmten Teilmenge gehört, für die gilt, dass sich jede natürliche Zahl auf i.w. eindeutige Weise als Produkt von Elementen von schreiben lässt", so muss man zuerst zeigen, dass die Menge wohldefiniert ist, also existiert und eindeutig ist. Während die Eindeutigkeit einer solchen Menge einfach zu zeigen ist, ist das mit der Existenz ein wenig komplizierter. Die mir bekannte Existenzbeweise setzen das Lemma von Euklid voraus; man müsste dann also wirklich die Primzahlen schon irgendwie definiert haben, bevor man sie definieren kann. Kennt wer einen Beweis für die Existenz einer solchen Menge , der ohne Lemma von Euklid auskommt? --NeoUrfahraner 10:07, 28. Jul 2005 (CEST)
- Dass die Wohldefiniertheit nicht einfach zu zeigen ist, ändert nichts daran, dass es sich um eine gültige Definition handelt.--Gunther 10:20, 28. Jul 2005 (CEST)
- Kann man die Wohldefiniertheit überhaupt zeigen, ohne das zu Definerende breits zirkulär voher definiert zu haben? --NeoUrfahraner 10:55, 28. Jul 2005 (CEST)
- Definition: PrimzahlA = zwei Teiler, PrimzahlB = Element der Menge P. Verwende PrimzahlA, um zu zeigen, dass PrimzahlB wohldefiniert ist. Ob man jetzt PrimzahlA oder PrimzahlB als Definition von Primzahl verwendet, ist egal.--Gunther 10:58, 28. Jul 2005 (CEST)
- PrimzahlA und PrimzahlB sind aber nicht wirklich gleichwertig. PrimzahlA kann man problemlos alleine defnieren, während man für die Definition von PrimzahlB als Voraussetzung PrimzahlA braucht. Man kann natürlich PrimzahlA "PrimzahlA" nennen, damit man es nicht "Primzahl" nennen muss; das ist aber bestenfalls eine Krücke, wirklich befriedigend ist es nicht. Anders wäre es, wenn man Existenz mit einem allgemeineren Satz sichern könnte - aber auch der mir bekannte Beweis, dass ein Euklidscher Ring ein ZPE Ring ist, verwendet eine Art Lemma von Euklid. --NeoUrfahraner 11:17, 28. Jul 2005 (CEST)
- Die Definition von PrimzahlB braucht PrimzahlA nicht. Wenn es Dir sympathischer ist, kannst Du PrimzahlB auch als ein Element des Schnittes aller multiplikativen Erzeugendensysteme von definieren, dann gibt es keine Probleme mit der Wohldefiniertheit. Um die Äquivalenz der Definitionen zu zeigen, braucht man natürlich beide Definitionen, das ist logisch unvermeidlich.--Gunther 11:26, 28. Jul 2005 (CEST)
Der "Schnitt aller multiplikativen Erzeugendensysteme" ist zwar wohldefiniert, aber wie kommt man damit jetzt zum Fundamentalsatz der Arithmetik? --NeoUrfahraner 12:29, 28. Jul 2005 (CEST)
- Der Fundamentalsatz besagt gerade, dass diese Definition äquivalent ist zur 2-Teiler-Definition. Es ist absolut üblich, Begriffe zu definieren per "wenn eine der folgenden äquivalenten Eigenschaften erfüllt ist", und die verschiedenen Implikationen sind nicht immer leicht zu zeigen. Logisch ist das vollkommen einwandfrei.--Gunther 12:38, 28. Jul 2005 (CEST)
- Nochmal systematisch:
- PrimzahlA: 2 Teiler
- PrimzahlB: eindeutig bestimmte Menge P
- PrimzahlC: Schnitt aller Erzeugendensysteme
- Es ist klar, dass aus dem Fundamentalsatz die Äquivalenz dieser Definitionen (und die Wohldefiniertheit von PrimzahlB) folgt. Wo ist also das Problem?--Gunther 12:42, 28. Jul 2005 (CEST)
- Wenn der Fundamentalsatz völlig unabhängig von der gewählten Definition ist, ist es auch kein Problem. Wenn aber der Beweis des Fundamentalsatzes die Definition von PrimzahlA (auch wenn man es irgendwie anders nennt) voraussetzt (und das tut der mir bekannte Beweis) dann ist die Äquivalenz dieser Definitionen lediglich ein "fauler Trick". --NeoUrfahraner 13:32, 28. Jul 2005 (CEST)
- Beweise setzen keine Definitionen voraus, Definitionen sind nur Namen. Der Fundamentalsatz, den ich meine, sagt: Man kann jede natürliche Zahl auf eindeutige Weise als Produkt von Zahlen schreiben, die genau zwei Teiler haben. Wenn Du das einen faulen Trick nennen willst, kann ich Dich nicht davon abhalten.--Gunther 13:45, 28. Jul 2005 (CEST)
- Der "faule Trick" ist, dass bei diesem Zugang krampfhaft versucht werden muss, das Wort "Primzahl" zu vermeiden und es daher irgendwie umschrieben werden muss, weil es ja erst später definiert werden darf. Der Beweis für diese Formulierung des Fundamentalsatzes liest sich sicherlich sehr lustig (Er hat Jehova/Primzahl gesagt ...) --NeoUrfahraner 14:33, 28. Jul 2005 (CEST)
- Man kann auch "irreduzibles Element" sagen :-) An der Sache ändert das aber nichts.--Gunther 14:46, 28. Jul 2005 (CEST)
"Beweise setzen keine Definitionen voraus, Definitionen sind nur Namen." Das scheint eine ganz neue Erkenntnis zu sein, zu der ich keinen vernünftigen Zugang finde. Ganz im Stillen sage ich zu mir selbst: Bedarf nicht sogar der Begriff des "Beweises" selbst einer Definition, d.h. einer Vereinbarung "zum Gebrauch der natürlichen Sprache", um von allen im gleichen Sinne verstanden und gebraucht zu werden? Wenn ich jemanden frage: Was ist ein Beweis?, dann muß dieser jemand ERKLÄREN können, was er unter dem Begriff "Beweis" versteht. Sobald er mit seiner Erklärung beginnt, benutzt er die natürliche Sprache und bewegt sich zwangsläufig zurück auf das, was gemeinhin unter einer DEFINITION verstanden wird: Eine sprachlich sinnvolle Aussage, die jeder Leser versteht und aus pragmatischen Gründen akzeptiert, um daraus weitere sinnvolle und nützliche Aussagen in einer natürlichen Sprache zu gewinnen. Wie hätte denn jemand den Primzahlsatz beweisen können, ohne den Begriff der "Primzahl" zu verwenden, also dessen Definition vorauszusetzen? Wie könnte denn überhaupt jemand in irgendeiner Wissenschaft Schlußfolgerungen ziehen, ohne auf etwas Vorhandenes zurückzugreifen? Alle Wissenschaft und jede Wissenschaft bedarf der Definitionen als Grundlage und Ausgangspunkt -- am meisten die Mathematik. Eine korrekte Aussage in diesem Zusammenhang lautet: Definitionen sind nur Namen, aber ohne diese Namen sind Beweise nicht möglich. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: "Der "faule Trick" ist,..." schrieb NeoUrfahraner -- Das ist kein "fauler Trick", sondern einfach Denkfaulheit als Nachdenken verkleidet. Der Trick ist, etwas Unhaltbares zu behaupten und es gleichzeitig als Selbstverständlichkeit darzustellen. Wobei die "Selbstverständlichkeit" nur im Kopf des Schreibers besteht, der hofft, daß die Leser seinem Kopfinhalt folgen mögen, aber die Mehrzahl der Leser wird dies sicherlich nicht tun. Denn die Mehrzahl der Leser hat ihren eigenen Kopfinhalt, welchen ich als "gesunden Menschenverstand" bezeichne. Dieser besagt: Wenn ich nicht weiß, was 0 und 1 (nichts und etwas) bedeuten, dann kann ich keinen Begriff der natürlichen Zahlen gewinnen. Vergleichbar verhält es sich mit jeder Wissenschaft. PPS: "Man kann jede natürliche Zahl auf eindeutige Weise als Produkt von Zahlen schreiben, die genau zwei [natürliche -- von ROHA eingefügt] Teiler haben." -- Wer so etwas behauptet, der wir wohl in der Lage sein, die natürlichen Zahlen 0 und 1 in dieser Weise aufzuschreiben. Hierzu sind nicht einmal die Primzahlen erforderlich oder gar definiert.
Struktur und Gestzmäßigkeit
Der Beitrag von "Struktur und Gestzmäßigkeit" von 84.152.212.236 beruht auf jahrelanger Arbeit und ist durch mehrer Computerprogramme verifiziert. Der Autor Dishayloo K soll doch bitte die Sache nachrechnen, ehe er den Beitrag unbesehen rauswirft. Er kann sich auch gern mit mir in Verbindung setzen. (d-oertel@web.de)
- Was hat er denn hinausgeworfen? --NeoUrfahraner 11:09, 19. Aug 2005 (CEST)
Rausgeworfen wurde innerhalb von Minuten heute zum zweiten Mal ein ca. 9 seitiger Beitrag, der sicher nicht gelesen, geschweige denn überarbeitet worden ist. In diesem Beitrag wird aufgezeigt, daß bei der schrittweisen Betrachtung der existierenden Primzahlen durchaus Strukturen und Gesetze zu beobachten sind, die auch mit einfachen Formeln oder mit entsprechendem Aufwand beschrieben werden können. Der Aufwand, der hier getrieben wurde, hängt damit zusammen, daß mir aus der Mathematik die beschreibenden Notationen und 'Rechenregeln' nicht bekannt sind. Ich selber bin Ingenieur und habe mir auf der Basis der angewandten Mathematik und der Programmierung die Kenntnisse bezüglich der Inhaltes erarbeitet und bereits seit Jahren in Benutzung und ausprobiert. Wenn mir also jemand mit der exakten und sauberen Schreibweise unter die Arme greift, so bin ich da nur dankbar. Und da ich gerne aus der Anonymität heraustreten möchte und entsprechende An- und Nachfragen auch beantworten werde: Mein Name ist Dietmar Oertel, d-oertel@web.de
- Hallo Dietmar, der Artikel "Primzahl" ist inzwischen recht gross. Einen 9-seitiger Beitrag würde ich daher (zunächst einmal) in einen eigenen Artikel auslagern und dorthin verweisen. Dort kann man immer noch diskutieren. Wie wärs mit Primzahl (Struktur) ? -- tsor 15:29, 19. Aug 2005 (CEST)
- PS: aus der Anonymität heraustreten kannst Du ganz einfach, wenn Du Dich anmeldest. Dann ist man zwar immer noch anonym (wenn man nichts über sich verrät), aber man ist auf seiner Diskussionsseite ansprechbar. -- tsor 15:32, 19. Aug 2005 (CEST)
- Ich habe das eben gemacht. Nach Primzahl (Struktur) ausgelagert! --Arbol01 15:41, 19. Aug 2005 (CEST)
- Ich habe den Kram doch dringelassen, nur die Namensangabe enternt. Da die meisten Artikel viele Autoren haben würden die Artikel vor Namensangaben überquellen. Die Autorenschaft ist aus der Versionsgeschichte ersichtlich. Deshalb habe ich den Namen entfernt. Der Text selber wurde nicht entfernt, das hat Arbol jetzt erst in den Artikel Primzahl (Struktur) ausgelagert. -- Dishayloo [ +] 16:30, 19. Aug 2005 (CEST)
- Stimmt! Mich stört, wie auch Tsor, das der ganze neu dazu gekommene Text den Artikel kaputt macht. Abgesehen davon ist er unverständlich, und wahrscheinlich Theoriefindung (gehört demnach gar nicht in einen Artikel). Von Oma-Tauglich will ich gar nicht reden. --Arbol01 16:35, 19. Aug 2005 (CEST)
Siehe Wikipedia:Was_Wikipedia nicht ist und en:Wikipedia:No original research. Dieser Artikel gehört definitiv nicht in die Wikipedia. --Zumbo 18:16, 19. Aug 2005 (CEST)
- Vielleicht ist ein bisschen was aus Dietmars Ausführungen zum Auffüttern des Artikels Primzahllücke geeignet? Auf jeden Fall ist die Originalversion viel zu episch für die Wikipedia.--JFKCom 19:34, 19. Aug 2005 (CEST)
Primzahlformeln: "überdurchschnittlich viele"
Die Formulierung "überdurchschnittlich viele Primzahlen" in bezug auf ist unklar und damit wenig sinnvoll.--Gunther 23:39, 20. Aug 2005 (CEST)
- Ich kann mich aber dunkel an die Studienzeit erinnern, dass dass irgendwie stimmt. Ich denke, es war was damit, dass die Primzahldichte in der Folge (n^2-n+41)_n-in-N höher als in N selbst war, und zwar auch für große n.--JFKCom 01:04, 21. Aug 2005 (CEST)
- Wenn ich das in eine Formel umsetzen wollte, wäre das:
- Ist das korrekt? Wenn ja, kann man das genauer fassen? Oder ist etwas anderes gemeint?--Gunther 01:25, 21. Aug 2005 (CEST)
- Wenn ich das in eine Formel umsetzen wollte, wäre das:
Verteilung der Primzahlen
Warum heißt es eigentlich Verteilung der Primzahlen, wenn die Funktion PI(X)=
Doch nichts anderes als die Anzahl der Primzahlen innerhalb eines Abschnittes der Natürlichen Zahlen angibt.
Unter Verteilung verstehe ich nun wirklich die Anordnung bzw. Struktur der Primzahlenverteilung auf der Zahlengeraden der Natürlichen Zahlen. Und da wären wir wieder bei der Struktur.;-)--Löschfix 19:50:12, 23. Aug 2005 (CEST)
- Naja, es ist eine statistische Verteilung. Dabei ist weniger interessant, wo die Primzahlen im einzelnen liegen, sondern vielmehr, wie groß die Dichte der Primzahlen ist. Mit der Anordnung bzw. Struktur beschäftigen sich mehr die Primzahlzwillinge, tripel, quadrupel und so weiter. Ausserdem ist die Struktur interessant für die Primzahllücken. --Arbol01 20:01, 23. Aug 2005 (CEST)
- In der Funktion steckt die gesamte Information über die Verteilung der Primzahlen: Die Sprungstellen sind die Primzahlen, die Bereiche, in denen konstant ist, sind Lücken.--Gunther 11:36, 24. Aug 2005 (CEST)
Frei kommutatives Monoid
Die Eindeutigkeit der Primzahlzerlegung bedeutet auch, dass das Monoid frei kommutativ über der Menge der Primzahlen ist. Soll man das in den Text einbauen oder ist das zu verwirrend? Passt es evtl. in den Abschnitt Verallgemeinerungen? --NeoUrfahraner
- Ich denke, das lohnt nicht. Man könnte das vielleicht in der Form erwähnen, dass multiplikative Fragen zu natürlichen Zahlen äquivalent sind zu additiven Fragen zu Folgen nichtnegativer ganzer Zahlen, die nur endlich viele von null verschiedene Glieder haben.--Gunther 11:39, 24. Aug 2005 (CEST)
- Hallo Gunther, zu diesem Thema habt ihr euch schonmal Gedanken gemacht: Man suche auf dieser Seite nach "13:53, 26. Jun 2005 (CEST)" ;) --SirJective 13:55, 24. Aug 2005 (CEST)
- Ah ja, danke. Ich konnte mich gerade nur noch an die "Verständnisfragen"-Diskussion zu fast diesem Thema erinnern... --Gunther 14:50, 24. Aug 2005 (CEST)
Struktur und Analyse Primzahl
Nachdem hier vor kurzem schon mal eine "Analyse" der Primzahlen stattgefunden hat, möchte ich das jetzt auch tun. Mit dem Unterschied, das ich das erstens nicht in den Artikel schreibe, und zweitens mein Ansatzpunkt völlig anders ist!
Eine Primzahl ist ein Zahl, für die zu jeder Zahl mit der kleine Fermatsche Satz gilt.
Statt nun in Ehrfurcht vor dem ganzen Konstrukt zu erstarren, nehmen wir jedes individuelle auseinander. Dabei gehen wir von aussen nach innen vor.
- Für jede natürliche Zahl n >= 1 gilt .
- Für jede natürliche Zahl n >= 2 gilt .
- Für jede ungerade Zahl n >= 3 gilt .
Dieses äussere Gerüst gilt also für alle ungeraden Zahlen, und damit auch für alle Primzahlen >= 3, alle Carmichael-Zahlen und alle ungeraden fermatschen Pseudoprimzahlen > 3.
Nun muß noch die Lücke gefüllt werden.
- Für jede Carmichel-Zahl c gilt das sie pseudoprim zu jeder, zu c teilerfremden Primzahl ist.Eine Carmichael-Zahl, zu der jede Primzahl teilerfremd ist, ist eine Primzahl (Wir tun mal so, als handele es sich bei den Primzahlen um Carmichael-Zahlen).
- Wenn die Carmichaelzahl c pseudoprim zur einer Basis a (mit a < c) ist, dann ist c auch pseudoprim zur Basis (c-a).
Testen wir an der Zahl 11, ob es Lücken gibt: 1, 10 und 11 sind definiert. Für 2, 3, 5 und 7 ist die Zahl 11 pseudoprim. Daraus folgt, das 11 auch zu 4, 6, 8 und 9 pseudoprim ist. Es gibt keine Lücke, also ist 11 eine Primzahl.
Reicht das? Probieren wir die Zahl 13: 1, 12 und 13 sind definiert. Für 2, 3, 5, 7 und 11 ist die Zahl 13 pseudoprim. Daraus folgt, das 13 auch zu 6, 8 und 10 pseudoprim ist (2 und 11 korrespondieren miteinander). Fehlen noch 4 und 9.
- Unter bestimmten Bedingungen (ich weiß noch nicht welche) ist c pseudoprim zu einer Basis der Form , also einer Primzahlpotenz.
Das erklärt natürlich noch nicht, warum, bei fermatschen Pseudoprimzahlen q, für einige zu q teilerfremde Primzahlen p gilt , und für andere zu q teilerfremde Primzahlen nicht. --Arbol01 19:09, 26. Aug 2005 (CEST)
- Ähm, vor irgendwelchen Detailfragen: Inwiefern ist das für den Artikel relevant?--Gunther 19:52, 26. Aug 2005 (CEST)
- Es ist eine etwas andere Sicht der Primzahl, und es ist eine neue Sicht des kleinen fermatschen Satzes. --Arbol01 20:13, 26. Aug 2005 (CEST)
- Das überzeugt mich nicht. Die meisten derartigen Fragen zu Verallgemeinerungen des kleinen Fermat betreffen Probleme, die damit zusammenhängen, dass im allgemeinen nicht zyklisch ist, vgl. prime Restklassengruppe. Mit dem Begriff der Primzahl hat das nur noch wenig zu tun.--Gunther 13:48, 29. Aug 2005 (CEST)
- Weder will ich das irgendwo einbauen, noch jemanden überzeugen. Primzahlen sind, auf ihre Weise auch nur Teilmenge der fermatschen Pseudoprimzahlen. Ich führe hier nochmal das Beispiel an, das ich in Wikibooks angeführt habe: Die Pseudoprimzahl 65:
- 65 ist pseudoprim zu den Primzahlen 31, 47 und 53 (soviel wird vorgegeben)
- Wenn 65 zu 31, 47 und 53 pseudoprim ist, dann ist 65 auch zu , und pseudoprim.
- Ausserdem ist 65 zu , und pseudoprim, und zu , und pseudoprim.
- Man kann 65 ist pseudoprim zu den Primzahlen 31, 47 und 53 so etwas wie einen Fingerabdruck nennen. Ebenso, wie jede Primzahl einzigartig ist, ist auch jede fermatsche Pseudoprimzahl einzigartig. Man könnte sagen das 29 den Fingerabdruck (2, 3, 5, 7, 11, 13, 17, 19 und 23) besitzt. --Arbol01 14:14, 29. Aug 2005 (CEST)
- Wenn Du es nicht einbauen willst, verstehe ich nicht ganz, warum Du es hier hinschreibst. Inhaltlich verstehe ich nicht, was an Primzahlen anders sein soll als an Primzahlen . Lässt man diese Einschränkung fallen, ist aber jeder teilerfremde Rest der Rest einer Primzahl (dirichletscher Primzahlsatz). In haben die Bilder von Primzahlen auch keine mir bekannten speziellen Eigenschaften. Im zitierten Absatz kannst Du übrigens Zahlen der Form betrachten, die zulässigen Basen bilden eine Untergruppe von (nämlich den Kern der Abbildung ).--Gunther 14:30, 29. Aug 2005 (CEST)
- Grummel! Erstens: Ich will ein bisschen diskutieren. Zweitens, Primzahlen <65 unterscheiden sich in keinster Weise von Primzahlen > 65. So etwas habe ich auch nie behauptet. --Arbol01 14:39, 29. Aug 2005 (CEST)
- Wenn ich das, was ich auf 65, mit den Primzahlen 31, 47 ud 53 mache, auf die Primzahl 11 mit den Primzahlen 2, 3 ,5 und 7 anwende:
- Wenn 11 zu 2, 3, 5 und 7 pseudoprim ist, dann ist 11 auch zu , , und pseudoprim.
- Ausserdem ist 11 zu , , und pseudoprim, und zu , , und pseudoprim.
- Deinem Absatz bildet eine Untergruppe von (nämlich den Kern der Abbildung )
- Der einzige Unterschied zu einer Pseudoprimzahl ist, das zulässigen Basen lückenlos zwischen 1 und n (bzw. 1 und n-1 liegen), während bei den Pseudoprimzahlen lücken vorhanden sind. --Arbol01 14:58, 29. Aug 2005 (CEST)
- Wenn ich das, was ich auf 65, mit den Primzahlen 31, 47 ud 53 mache, auf die Primzahl 11 mit den Primzahlen 2, 3 ,5 und 7 anwende:
- Ich verstehe nicht, wieso Du nur 31, 47, 53 und nicht z.B. auch 73, 79, 83, 103, 109, 151, 157, 181, 229 mit den Resten 8, 14, 18, 38, 44, 21, 27, 51, 34 betrachtest. Allerdings ist auch 47 eigentlich überflüssig, denn jede zulässige Basis ist bereits kongruent zu mit geeigneten (z.B. ). Ich verstehe nicht, warum Du Dich überhaupt auf Primzahlen als Basen einschränkst.--Gunther 15:06, 29. Aug 2005 (CEST)
- Das Programm, welches ich geschrieben habe, und welches Primzahlen, fermatsche Pseudoprimzahlen und Carmichael-Zahlen voneinnader unterscheidet, macht dies alleine auf der Basis von Primzahlen, die Kleiner sind, als die zu testende Zahl. Die Liste bzw. Listen, die sich auf www.wikisource.org befinden, beruhen einzig auf diesem Programm, und Variationen davon. Die Primzahlen größer 65 kann ich genauso aus 31, 47 und 53 herleiten. Für 83 zum Beispiel gilt 83 mod 65 = 18, und 18 ist eine Zahl, zu der 65 Pseudoprim ist.
- Hier die Quintessenz (die ich vielleicht auch in einem der wiki... veröffentlichen würde):
- Zu jeder Pseudoprimzahl q gibt es mindestens eine Primzahl p<q, zu der die Zahl q pseudoprim ist. Die Menge aller Primzahlen mit p<q, zu denen eine Pseudoprimzahl q pseudoprim ist, ist für jede Pseudoprimzahl individuell, und kann mit einem Fingerabdruck verglichen werden. Aus diesen Primzahlen können alle anderen gültigen Zahlen, zu denen eine Pseudoprimzahl q pseudoprim ist, abgeleitet werden.
- Eine Pseudoprimzahl q, für die gilt, das sie zu jeder Primzahl p<q pseudoprim ist, nennt man eine Primzahl. Aus der Menge der Primzahlen die pseudoprim zu q sind, lässt sich zeigen, das alle natürlichen Zahlen != q Zahlen sind, zu denen q pseudoprim ist.
- Puh, das hört sich scheußlich an. --Arbol01 16:07, 29. Aug 2005 (CEST)
- Gegenbeispiel: Zu gibt es keine Primzahl , so dass q pseudoprim zur Basis p wäre; q ist jedoch pseudoprim zu den Basen 14 und 25 (und nur zu diesen). 39 fehlt auch in den zitierten Listen.--Gunther 16:29, 29. Aug 2005 (CEST)
- Mist! Dann kann ich erstens alles über den Haufen werfen, und zweitens meine Listen nachkorrigieren. --Arbol01 16:35, 29. Aug 2005 (CEST)
- BTW: Der Todesstoß wäre jetzt noch, wenn 39 zu 14 und 25 (zumindest das stimmt (14+25=39)), nicht nur fermat pseudoprim wäre, sondern sogar euler pseudoprim. --Arbol01 16:39, 29. Aug 2005 (CEST)
Immer wenn man meint, man hätte eine Regelmäßigkeit bei den fermatschen Pseudoprimzahlen entdeckt, dann kommt eine Pseudoprimzahl an, und sagt "Ätsch, für mich gilt das nicht!" --Arbol01 16:48, 29. Aug 2005 (CEST)
- Bevor Du Dir die Mühe machst, selbst das entsprechende Programm zu schreiben: Das kleinste Gegenbeispiel für eulersche Pseudoprimzahlen scheint 125 mit den Basen 57 und 68 zu sein. Nimm's nicht zu hart :-) Aber nach Deiner letzten Aussage dürftest Du ja auch nicht mehr überrascht sein ;-) --Gunther 16:55, 29. Aug 2005 (CEST)
- Auf 14 und 25 weist auch hin, das ist, und ist, und für keine andere zahl n < 39 gilt . Auf diesem weg habe ich aber noch ein paar Hindernisse auszuräumen. --Arbol01 17:56, 29. Aug 2005 (CEST)
Zur Definition von "Primzahl"
Unter Mathematikern greift [= gilt] folgende Konvention: "Genau zwei" = "nicht weniger und nicht mehr als zwei", also eindeutig definiert. "Mit genau zwei verschiedenen natürlichen Teilern, nämlich 1 und sich selbst" sagt nicht mehr aus als "mit genau zwei natürlichen Teilern". Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Was ist damit gewonnen? --NeoUrfahraner 07:07, 14. Sep 2005 (CEST)
- Das ist doch schon lange ausdiskutiert und wurde auch von Dir gut geheißen. Lass doch die Einleitung mal in Ruhe. --DaTroll 09:00, 14. Sep 2005 (CEST)
- "und wurde auch von Dir gut geheißen" -- an welcher Stelle habe ich dies "gut geheißen"? Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Im Abschnitt Komprimissvorschlag, 2. Versuch. --DaTroll 10:15, 14. Sep 2005 (CEST)
- "verschieden" sowie "nämlich 1 und sich selbst" sind nicht Teil der Kompromissformulierung, sondern nachträgliche Einfügungen einer IP, die ich nicht revertet habe, weil ich keine Lust hatte, das alle Woche wieder zu machen, weil es ja doch wieder jemand reinschreibt. Falsch ist es nicht, und da offenbar einige Leser die ursprüngliche Formulierung als zu knapp empfinden, warum nicht. Wer sich daran stört, darf die regelmäßige Entfernung gerne übernehmen :-) --Gunther 12:40, 14. Sep 2005 (CEST)
- Ups, dabei hatte ich sogar extra nochmal die Kompromissformulierung im entsprechenden Abschnitt nachgelesen, da sass mir wohl Freud ueber der Schulter, Entschuldigung. --DaTroll 12:43, 14. Sep 2005 (CEST)
- "und wurde auch von Dir gut geheißen" -- an welcher Stelle habe ich dies "gut geheißen"? Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
Habe abermals die Einleitung auf das Wesentliche reduziert. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Ist ja ein lustiges Spielchen, die Einleitung im Wochentakt umzuformulieren ... -- tsor 05:12, 21. Sep 2005 (CEST)
- Ich betrachte und halte die Wikipedia als eine ernsthafte Sache. Bin aber für jedes "lustige Spielchen" bereit. Bisher habe ich ein solches "Spielchen" in meiner betreffenden Beiträge noch nicht finden können, betrachte tsors Beitrag also als nicht mehr und nicht weniger als: Einen Anreiz zu einem ganz neuen Spiel. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
„verstzändlich“ ist eben etwas anderes als „allgemein verständlich“ (siehe Änderung vom 2.10.05 12:55) --83.176.142.42 16:56, 2. Okt 2005 (CEST)
Primzahlen in anderen Zahlensystemen
Wie kann man Primzahlen in anderen Zahlensystemen insbesondere im binären Zahlensystem finden ? Benutzer:rho
- Genau wie in jedem anderen Zahlensystem auch, die Zahldarstellung spielt für das Sieb des Eratosthenes keine Rolle.--Gunther 21:48, 18. Sep 2005 (CEST)
Seitensperrung
Ich habe die Seite jetzt erstmal gesperrt, um einer Fortführung des Edit-Wars entgegenzuwirken. Außerdem habe ich sie vorher auf die Version von Tsor/die Ausgangsversion zurückgesetzt, da in dieser die richtige Definition einer Primzahl dargestellt wird. Ansonsten wäre 1 auch eine Primzahl (2 Teiler, die nicht verschieden sein müssen: 1 und 1). --rdb? 13:02, 2. Okt 2005 (CEST)
- Auch die andere Fassung ist mathematisch korrekt (1 und 1 sind nicht zwei Teiler, sondern einer). Die "Langfassung" ist aus mathematischer Sicht unnötig lang und enthält Redundanzen; die Hoffnung ist jedoch, dass sie für Laien klarer ist.--Gunther 13:12, 2. Okt 2005 (CEST)
- Ack. Langfassung im Sinne des Oma-Tests. -- tsor 13:24, 2. Okt 2005 (CEST)
- Weil die kürzere Fassung missverstanden werden kann, bevorzuge ich mittlerweile auch die längere Variante.--MKI 13:29, 2. Okt 2005 (CEST)
- Auch wenn es eigentlich überflüssig sein sollte: Auch ich bin für die Langfassung (nicht für mich, aber für den unbedarften Leser) --Arbol01 19:27, 2. Okt 2005 (CEST) bin im Uraub
- "Weil die kürzere Fassung missverstanden werden kann, bevorzuge ich mittlerweile auch die längere Variante." -- sagte MKI. -- Was für eine erbärmliche Lüge. MKI gibt nur vor diese Variante zu bevorzugen, weil: 1. Er nicht viel Ahnung von der Mathematik hat; oder 2. Er mir eins auswischen will. Ersteres wäre verzeilich, letzteres verwerflich. (Ich schätze Ihn ein als den ersteren Typ.) Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Seid Ihr nur so dämlich, wie ihr mir erscheint, oder seid Ihr noch dümmer ? Wie kann denn einer von Euch einem anderen von Euch erlauben, einen Wikipedia-Artikel zu dem Artikel "Primzahl" zu sperren ? Ist der Sperrer noch ganz bei Trost ? (Habt Ihr auch Euer Gehalt verdient, indem Ihr der "neuen Rechtschreibung" Euern Kotau absolviert habt ? Na ja, ich werde Euch trotzdem die Eier aus dem Schädel kicken.) (Von den Primzahlen gar nicht zu reden...) Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Gunther: Sorry, mein Fehler...
- Ansonsten: Ebenfalls für die Langfassung, siehe WP:OMA --rdb? 13:57, 2. Okt 2005 (CEST)
- Für obige Grobheiten gehört ROHA eigentlich gesperrt. --Philipendula 14:06, 2. Okt 2005 (CEST)
- Bestätigst Du mit dieser Aussage nicht genau meine Vermutung ? (Erst sperren, dann -- vielleicht -- nachdenken.) Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Menschen, die die Welt nicht braucht. --Philipendula 14:35, 2. Okt 2005 (CEST)
- Bestätigst Du mit dieser Aussage nicht genau meine Vermutung ? (Erst sperren, dann -- vielleicht -- nachdenken.) Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Für obige Grobheiten gehört ROHA eigentlich gesperrt. --Philipendula 14:06, 2. Okt 2005 (CEST)
- Seid Ihr nur so dämlich, wie ihr mir erscheint, oder seid Ihr noch dümmer ? Wie kann denn einer von Euch einem anderen von Euch erlauben, einen Wikipedia-Artikel zu dem Artikel "Primzahl" zu sperren ? Ist der Sperrer noch ganz bei Trost ? (Habt Ihr auch Euer Gehalt verdient, indem Ihr der "neuen Rechtschreibung" Euern Kotau absolviert habt ? Na ja, ich werde Euch trotzdem die Eier aus dem Schädel kicken.) (Von den Primzahlen gar nicht zu reden...) Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
Du hast mich neugierig gemacht: Welche Menschen braucht die Welt nicht? Menschen wie mich ? Oder meintest Du ganz andere Menschen ? -- Ich bin einfach nur neugierig. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Menschen, die überall rumwuseln und sich feige hinter einer IP verstecken. Und dann auch noch solche erbärmlichen Kommentare auskotzen. -- tsor 17:49, 2. Okt 2005 (CEST)
- "Menschen, die ... sich feige hinter einer IP verstecken." -- Aber ich habe mich niemals hinter einer IP versteckt. Jeder meiner Beiträge ist mit meinem vollen Namen gekennzeichnet und endet mit meiner vollständigen E-Mail-Adresse (bitte prüfe es nach). Oder meintest Du vielleicht, ich sollte noch jedes Mal meine Telefonnummer und meine postalische Anschrift beifügen ? Wer diese haben möchte, der braucht mir dies bloß in einer E-Mail mitzuteilen, denn diese meine E-Mail-Adresse sollte inzwischen hinreichend bekannt sein. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Es gehört zu den Prinzipien der Wikipedia, dass inhaltliche Fragen öffentlich hier, d.h. auf den Diskussionsseiten und auf den Disk.seiten der Benutzer diskutiert werden. Und nicht etwas per email, wo andere nichts mitkriegen. Beispielsweise ist die email-Adresse für Diskussionen über Primzahlen ungeeignet. -- tsor 06:10, 5. Okt 2005 (CEST)
- Ist es möglich, daß Du Deine letzten Zeilen (die zum Thema nichts beitragen) einfach deshalb geschrieben hast, weil Du Dich durch meinen letzten Beitrag bedroht gefühlt hast ? Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
- Ist es möglich, dass du deine Beiträge ("Seid ihr nur so dämlich..:" und "Was für eine erbärmliche Lüge"), die ebenfalls nichts zum Thema beitragen, einfach deshalb geschrieben hast, weil du dich durch die von deiner Meinung abweichenden Äußerungen anderer Benutzer bedroht gefühlt hast? --rdb? 12:35, 5. Okt 2005 (CEST)
- Ist es möglich, daß Du Deine letzten Zeilen (die zum Thema nichts beitragen) einfach deshalb geschrieben hast, weil Du Dich durch meinen letzten Beitrag bedroht gefühlt hast ? Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ )
rdb? fragte mich: "ist es möglich" ... (siehe obigen Beitrag). Nein, das ist nicht möglich. Weil ich mich durch eine abweichende Meinung nur bestätigt (!) oder widerlegt, niemals bedroht fühlen kann. Du darfst aber eine "abweichende Meinung" nicht mit einer "Sperrung", und eine solche letztere nicht mit einer Argumentation verwechseln. Ich werde nur dann wirklich polemisch und krude, wenn jemand einen sachlichen Beitrag mangels Argumenten einfach löscht, und sich hernach auch noch (unzulässigerweise) auf die Regeln der Wikipedia beruft. So bitte nicht! Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) PS: Frage an Rdb: Durch welche von meiner "Meinung abweichenden Äußerungen anderer Benutzer" sollte ich mich "bedroht gefühlt" haben ? Bitte gib mal ein Beispiel an.
Die Sperrung dieses Wikipedia-Artikels ist Gunther geschuldet, der nichts weiter pflegt als seine Feindschaft gegen Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) (8112005)
- Schau Dir nochmal an, worum es in dem Edit-War ging, und vergleiche mit [7].--Gunther 12:10, 8 November 2005 (CET)
- @ROHA: Hallo ROHA, wie wäre es, wenn Du dir hier einfach einen Wiki-Account zulegen würdest (muß ja nicht gleich so romantisch wie meiner Benutzer:JFKCom sein)? --JFKCom 23:11, 8. Nov 2005 (CET)
Was unterscheidet "Hitler" von den "Primzahlen" ?
Im Rahmen des Wikipedia-Projekts gibt es nur den Unterschied zwischen denjenigen, welche Beiträge einreichen und denjenigen, welche diese Beiträge aus nicht nachvollziehbaren Gründen abweisen und löschen. Manchmal sind die Admins einfach zu faul etwas nachzulesen, zu anderen Zeiten sind andere Administratoren sehr fleißig und ernsthaft, nämlich wenn sie sagen:
Schaut unter http://de.wikipedia.org/wiki/Diskussion:Adolf_Hitler vorbei ! Da hat einer Ordnung geschaffen zum Nutzen aller Leser. Obwohl der Artikel zu "Hitler" freigegeben war. Der ordnungsschaffende Wikipedianer ist Jesusfreund. Wer den Artikel "Primzahl" immer noch zu sperren glauben möchte, wo doch der Artikel "Hitler" freigegeben ist -- der hat entweder das Wikipedia-Prinzip nicht recht verstanden, oder er ist einfach eingeschlafen. Wir reden hier über die "Wikipedia", nicht über "Primzahlen". Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) (19112005)
- Mh, vielleicht liegt die erfolgreiche Änderung des von dir genannten Artikels einfach daran, dass man einen Kompromiss gefunden hat, der dann nicht von Einzelbenutzern torpediert wurde?! Weiter oben haben mehrere Personen der ausführlicheren Version (u.a. mit Verweis auf die Allgemeinverständlichkeit) zugestimmt und du bist der einzige, der protestiert... --rdb? 10:08, 19. Nov 2005 (CET)
"und du bist der einzige, der protestiert... " Aber ich bin auch der einzige, der etwas beizutragen hat. Wenn und falls ich etwas einzuwenden habe, dann hat es Hand und Fuß. Aber glaube mir, daß ich nicht eine "Hitler-Heldenpose" in der englischsprachigen Wikipedia dulden werden einfach deshalb, weil sie in der englischsprachichigen Wikipdia ereschienem ist. _NEIN_! Hitler-Bilder von einem X in die Wikipedia eingestellt bedeuten zunächst einmal überhaup nichts, zweitens bedeuten sie noch viel weniger. Kurz: Wikipedia ist ein großes Projekt. Wenn Dummköpfe behaupten, daß etwas anders sei als es ist, dann mußt Du Gescheiter Kopf es entweder bestätigen oder widerlegen. Mehr ist nicht drin. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) (19112005)
- ROHA, mir scheint, dass Du hier derjenige bist, der das Wiki-Prinzip pervertiert, denn erst durch Dein Eingreifen, das sich gegen den Willen der massiven Mehrheit stellt, ist die Artikelsperrung notwendig geworden. Und Deinetwegen muss der Artikel weiterhin gesperrt bleiben. So wie es mit anderen Artikeln geschieht, in denen Du Deine Meinung auf Kosten der Mehrheitsansichten durchzudrücken versuchst. --Unscheinbar 11:54, 19. Nov 2005 (CET)
- Ich habe etwas zu sagen und beizutragen zum Wikipedia-Projekt. Hast du etwas besseres beizutragen ? Dann trage es hier bei. Aber zu behaupten: "Und Deinetwegen muss der Artikel weiterhin gesperrt bleiben. ..." bedeutet genau: Ich bin nicht sehr gescheit und kann deinen Argumenten nicht mit Gegenargumenten begegnen. Deshalb muß ich mich auf meinen letzten Fluchtort zurückziehen. Mein letzter Fluchtort besteht in folgendem: Entweder bist Du still, oder ich mache Dich stil, indem ich Deine Beiträge zur Wikipedia sperre. -- Ich habe Dich verstanden: Halt's Maul oder ich stopfe es Dir. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) (22112005)
- Beim Wikiprinzip ist es wie in der Demokratie: es geht nicht darum, das Richtige zu tun, sondern darum, Mehrheiten zu finden. --NeoUrfahraner 07:06, 22. Nov 2005 (CET)
- Nein, das Wikipedia-Prinzip besteht darin, für "das Richtige", also das, was von den Menschen als wahrhaftig verstanden wird, eine Mehrheit unter den Wikipedianern zu finden. Für Flach- und Dummheiten ist die Wikipedia ein gefundenes Fressen. Für tiefe Wahrheiten und gescheite Beiträge ist sie offen. "Mehrheiten zu finden." -- Das wäre zu einfach. Mehrheiten fand Hitler, Mehrheiten finden auch heutige Kandidaten. Aber zu sagen daß es in einer Wikipedia-Gemeinde einzig um Mehrheiten gehen kann, das ist zumindest sehr, mehr als sehr gewagt. Eine Mehrheit für A kein leicht in eine Minderheit für A umschlagen, sobald die vormalige Mehrheit _durch Argumente_ vom Gegenteil überzeugt worden ist. Da wir in der Wikipedia zum Glück nicht mit echten Waffen kämpfen, sondern mit Worten , sollten wir alle diejenigen überzeugen können, die nichts weiter kennen als Waffen (als Waffe gilt in diesem Kontext die Sperrung eines Wikipedia-Artikels). Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) (27112005)
- Beim Wikiprinzip ist es wie in der Demokratie: es geht nicht darum, das Richtige zu tun, sondern darum, Mehrheiten zu finden. --NeoUrfahraner 07:06, 22. Nov 2005 (CET)
- @roha: Es geht hier nicht nur um "tiefe Wahrheiten" sondern auch um Allgemeinverständlichkeit. In der Praxis bedeutet dies: Die Einleitung eines Artikels sollte möglichst allgemein verständlich sein ("Omatest"), evtl. auch auf Kosten der präzsisen Definition, auch können (für den Fachmann) redundante Aussagen nützlich sein. Im Inneren des Artikels kann man dann die "tiefen Wahrheiten" darstellen. Da Du dieses Prinzip als einziger Beteiligter abstreitest und wider besseren Wissens vor Editwars nicht zurückschreckst ist der Artikel eben gesperrt. Der Grund der Sperrung liegt eindeutig in Deinem Verhalten. -- tsor 10:38, 27. Nov 2005 (CET)
- Es geht in der Wikipedie um Allgemeinverständlichkeit. "Die Einleitung eines Artikels sollte möglichst allgemein verständlich sein ("Omatest")" -- Aber das ist ja meine Rede seit eh und jeh. Schau mal den Artikel (vor allem seine Diskussionsseite) "Kohlebrand" an, dann wirst Du staunen, wie genau ich mit Deiner Meinung übereinstimme. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) (04122005) PS: Mehr als diese leeren Satz kann ich gar nicht hinzufügen.
Ich verstehe nicht, warum dieser Artikel gesperrt ist
Ich verstehe nicht, warum dieser Artikel gesperrt ist. Danke für die Aufklärung. (Diese Aufklärung lautet etwa so: Ich bin dumm und weiß von nichts.) Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) (22112005)
unbequemer Link
Im Text ist ein Verweis auf RSA, aber dahinter steckt eine Weiterleitung, der richtige Artikel heißt "RSA-Kryptosystem". Könnte das bitte jemand ändern? Danke.
- Erledigt.--Gunther 12:16, 11. Dez 2005 (CET)
4x+1 und 4x+3 (4x-1)
Darüber "Jede natürliche Zahl der Form mit einer nichtnegativen ganzen Zahl enthält mindestens einen Primfaktor der Form " bin ich gerade gestolpert.
Müßte es nicht heissen: "Jede natürliche Zahl der Form mit einer nichtnegativen ganzen Zahl enthält eine ungerade Anzahl von Primfaktoren der Form " ?
Wie komme ich darauf? 7*7 = 49; 11*11 = 121, 19*19 = 361. Allgemein: so ich mich nicht irre. --Arbol01 15:22, 3. Jan 2006 (CET)
- Ungerade Zahlen sind mindestens 1. Man müsste erklären, dass man die Primfaktoren mit ihren Vielfachheiten zählt usw., und das ist mMn zu umständlich.--Gunther 15:24, 3. Jan 2006 (CET)
- Dann ist die Aussage aber falsch. Ich werde mal sehen, was ich machen kann. --Arbol01 15:31, 3. Jan 2006 (CET)
- Nachtrag:
- Was ist falsch? (Wenn Du gleich im Restklassenring modulo 4 rechnest, wird es übrigens einfacher, dann wird der "Nachtrag" zu .)--Gunther 15:37, 3. Jan 2006 (CET)
- Nachtrag:
- Was falsch ist: Deine Aussage! Natürliche Zahlen mit mit einer geraden Anzahl (größer 1) an Primfaktoren der Form 4k+3, sind keine Zahlen der Form 4m+3.
- Das steht im widerspruch zu:
- Jede natürliche Zahl der Form mit einer nichtnegativen ganzen Zahl enthält mindestens einen Primfaktor der Form
- Aus diesem Grund ist die Aussage Jede natürliche Zahl der Form mit einer nichtnegativen ganzen Zahl enthält mindestens einen Primfaktor der Form widersprüchlich und falsch. --Arbol01 15:44, 3. Jan 2006 (CET)
- Ein Satz der Form "Jedes X ist Y" macht keine Aussage über Dinge, die nicht X sind.--Gunther 15:47, 3. Jan 2006 (CET)
- Stimmt natürlich Auch wieder. Vielleicht sollte man trotzdem die Dinge Zeigen, die X nicht sind. --Arbol01 15:50, 3. Jan 2006 (CET)
- Das geht halt dann wieder nur mit der umständlichen Formulierung: "Zahlen der Form 4m+1 enthalten gerade viele Primfaktoren der Form 4k+3, wenn man sie mit Vielfachheiten zählt." Ohne länger über Beispiele nachgedacht zu haben, würde ich allerdings sagen, dass in den meisten Fällen die Aussage, wie sie im Artikel steht, ausreichend ist.--Gunther 15:54, 3. Jan 2006 (CET)
- Stimmt natürlich Auch wieder. Vielleicht sollte man trotzdem die Dinge Zeigen, die X nicht sind. --Arbol01 15:50, 3. Jan 2006 (CET)
- Ein Satz der Form "Jedes X ist Y" macht keine Aussage über Dinge, die nicht X sind.--Gunther 15:47, 3. Jan 2006 (CET)
- Ich befürchte, dass andere Leser in die gleiche Falle stolpern könnten wie Arbol01; wenn man also den Abschnitt stehen lassen will, wird es wohl notwendig sein, auch eine Aussage über Primzahlen der Form 4k+1 zu machen, und dann bleibt aber auch nichts anderes übrig als von gerade/ungerade und Vielfachheit zu sprechen. Die nächste Frage ist dann allerdings, ob man nicht auch im nächsten Absatz die analogen Aussagen über Primzahlen der Gestalt 6k+1 und 6k+5 machen will. --NeoUrfahraner 16:04, 3. Jan 2006 (CET)
- Ich habe das nochmal etwas umformuliert und die umständliche Nebenrechnung rausgeworfen.--Gunther 16:10, 3. Jan 2006 (CET)
- Es stimmt, dass eine entsprechende Aussage nicht möglich ist, aber eine Aussage (nämlich gerade/ungerade) ist schon möglich. Ich bin schon neugierig, wann das jemand entdeckt und wie es dann formuliert wird ;-) --NeoUrfahraner 16:18, 3. Jan 2006 (CET)
- Ja, man muss immer noch sehr genau lesen *eg* --Gunther 16:21, 3. Jan 2006 (CET)
- Es stimmt, dass eine entsprechende Aussage nicht möglich ist, aber eine Aussage (nämlich gerade/ungerade) ist schon möglich. Ich bin schon neugierig, wann das jemand entdeckt und wie es dann formuliert wird ;-) --NeoUrfahraner 16:18, 3. Jan 2006 (CET)
- Ich habe das nochmal etwas umformuliert und die umständliche Nebenrechnung rausgeworfen.--Gunther 16:10, 3. Jan 2006 (CET)
- Ich befürchte, dass andere Leser in die gleiche Falle stolpern könnten wie Arbol01; wenn man also den Abschnitt stehen lassen will, wird es wohl notwendig sein, auch eine Aussage über Primzahlen der Form 4k+1 zu machen, und dann bleibt aber auch nichts anderes übrig als von gerade/ungerade und Vielfachheit zu sprechen. Die nächste Frage ist dann allerdings, ob man nicht auch im nächsten Absatz die analogen Aussagen über Primzahlen der Gestalt 6k+1 und 6k+5 machen will. --NeoUrfahraner 16:04, 3. Jan 2006 (CET)
Mir stellt sich die Frage, ob man diese Aussage überhaupt stehen lassen soll. Das mathematisch geschulte Auge betrachtet das sowieso modulo 4, dann ist die Aussage trivial; für das mathematisch ungeschulte Auge ist es ein Stolperstein. Hat diese Aussage hier im Artikel eine bestimmte Relevanz, dass man sie unbedingt stehen lassen soll? Wenn ja, sollte die Relevanz verdeutlicht werden, wenn nein, kann man wohl darauf verzichten. --NeoUrfahraner 16:35, 3. Jan 2006 (CET)
- (Erlaube mir mal, das auszurücken.)
- Ein selbstbezügliches Beispiel: Mit dieser Aussage kann man direkt analog zu Euklid beweisen, dass es unendlich viele Primzahlen der Form 4k+3 gibt. Genügt Dir das schon?--Gunther 16:38, 3. Jan 2006 (CET)
- Anderes Beispiel (Lebesque, 1869 (?)): Die Gleichung hat keine ganzzahligen Lösungen.
- Beweis: Die Gleichung ist äquivalent zu ; wie man leicht sieht, kann x deshalb nicht gerade sein. Weiter kann man umformen zu ; die eckige Klammer hat die Form 4m+3, also einen Primfaktor p der Form 4k+3, d.h. ist teilbar durch p, also wäre −1 ein quadratischer Rest modulo p, das ist aber bei Primzahlen der Form 4k+3 nicht der Fall.--Gunther 16:52, 3. Jan 2006 (CET)
- Mir genügts ;-). Irgendwie sollte man aber die Bedeutung dieser Aussage im Artikel klar machen. --NeoUrfahraner 17:01, 3. Jan 2006 (CET)
So, ich war eben beim Einkaufen, und hatte Zeit zum Nachdenken. Um NeoUrfahraners Gedanken Weiterzuführen: Die ganze Sache ist gar keine spezielee Eigenschaft der Primzahlen der Form 4k+3 noch der Primzahlen überhaupt. Das Ganze läßt sich nämlich in dem allgemeinen Satz: Jede natürliche Zahl der Form mit einer nichtnegativen ganzen Zahl ist auf wenigstens eine Weise so zerlegbar, das ein Faktor der Form darin vorkommt. Demzufolge würde ich auf diesen Komplex verzichten. --Arbol01 17:21, 3. Jan 2006 (CET)
- Bitte keine Theoriefindung betreiben. In dieser Form ist das trivial (setze ), wenn Du "Primfaktor" meinst, ist es falsch (setze ).--Gunther 17:26, 3. Jan 2006 (CET)
- Nein, ich meinte mit Faktor eine beliebige Zahl, keine Primzahl. Ich will blos die Absurdität zeigen. Natürlich geht das mit Primzahlen beliebiger Form:
- 779 = 19*41 (10m+9 = 10k+9 * 10k+1) oder 989 = 43*23 (22m+21 = 22k+21 * 22k+1)
- Und herausgelöst von den Primzahlen:
- 4277 = 91*47 (46m+45 = 46k+45 * 46k + 1)
- --Arbol01 17:44, 3. Jan 2006 (CET)
- Die Beispiele habe ich doch schon genannt: Lässt man 1 als Faktor zu, ist es trivial: ; lässt man die 1 nicht zu, wird es falsch: , und 3 lässt sich nicht als schreiben.--Gunther 17:47, 3. Jan 2006 (CET)
- Warum soll man die Eins nicht zulassen? Mir geht es ja nur darum, das das Ganze keine typische Sache der Primzahlen ist. --Arbol01 18:12, 3. Jan 2006 (CET)
- Weil die Aussage dann – wie schon mehrfach gesagt – trivial ist, weil man eine derartige Faktorisierung direkt hinschreiben kann. Der wesentliche nicht ganz triviale Punkt ist hier, dass für a=4 oder a=6 in jeder Faktorisierung einer Zahl der Form 4k+3 bzw. 6k+5 ein Faktor derselben Form vorkommen muss, und diese Aussage ist auch nicht weiter verallgemeinerbar (weil dafür sein muss). Primzahlen spielen eine Rolle, weil Primzahlen der Form 4k+1 bzw. 4k+3 jeweils spezielle Eigenschaften haben und man deshalb aus dem Wissen, dass eine Zahl einen Primfaktor dieser Form hat, Nutzen ziehen kann, vgl. obige Beispiele. Ein beliebiger Faktor dieser Form hilft wenig weiter.--Gunther 18:26, 3. Jan 2006 (CET)
- nicht das Du mich falsch verstehst. Ich bin mir schon der Analogie zur eindeutigen Primfaktorzerlegung bewußt. Wenn man 7 = 7*1 als mögliche Primfaktorzerlegung zuließe, hätte man die eindeutige Primfaktorzerlegung zerstört. Aber darum geht es mir in dem Fall gar nicht. --Arbol01 18:43, 3. Jan 2006 (CET)
- Ich habe nicht das Gefühl, dass Deine Antwort irgendetwas mit meinem Beitrag von 18:26 zu tun hat, deshalb für mich EOD.--Gunther 18:49, 3. Jan 2006 (CET)
- nicht das Du mich falsch verstehst. Ich bin mir schon der Analogie zur eindeutigen Primfaktorzerlegung bewußt. Wenn man 7 = 7*1 als mögliche Primfaktorzerlegung zuließe, hätte man die eindeutige Primfaktorzerlegung zerstört. Aber darum geht es mir in dem Fall gar nicht. --Arbol01 18:43, 3. Jan 2006 (CET)
- Weil die Aussage dann – wie schon mehrfach gesagt – trivial ist, weil man eine derartige Faktorisierung direkt hinschreiben kann. Der wesentliche nicht ganz triviale Punkt ist hier, dass für a=4 oder a=6 in jeder Faktorisierung einer Zahl der Form 4k+3 bzw. 6k+5 ein Faktor derselben Form vorkommen muss, und diese Aussage ist auch nicht weiter verallgemeinerbar (weil dafür sein muss). Primzahlen spielen eine Rolle, weil Primzahlen der Form 4k+1 bzw. 4k+3 jeweils spezielle Eigenschaften haben und man deshalb aus dem Wissen, dass eine Zahl einen Primfaktor dieser Form hat, Nutzen ziehen kann, vgl. obige Beispiele. Ein beliebiger Faktor dieser Form hilft wenig weiter.--Gunther 18:26, 3. Jan 2006 (CET)
Verschoben
Einige ältere Diskussionsbeiträge, die nicht die Themen "Was ist eine Primzahl", "Warum ist 1 keine Primzahl" oder "die größte bekannte Primzahl" betreffen, wurden nach Diskussion:Primzahl/Archiv1 verschoben. Die - anscheinend erledigte - Diskussion zu Primzahllücken wurde nach Diskussion:Primzahllücke verschoben. --SirJective 20:17, 23. Aug 2005 (CEST)
"Weiteres"
Bevor Ihr da noch mehr Energie in die Frage investiert, ob nun 1+3 oder 5+7 das geeignetere Gegenbeispiel ist, mal grundsätzlich: 1. Ist diese falsche Aussage nicht viel zu offensichtlich falsch, als dass man das erwähnen müsste? Es gibt noch viel mehr falsche Aussagen, die man erwähnen könnte... 2. Welche Anwendungen gibt es für die richtige Aussage? Es gibt noch mehr ziemlich triviale Aussagen über Primzahlen (z.B. ist die Differenz zweier Quadratzahlen höchstens dann eine Primzahl, wenn dazwischen keine weitere Quadratzahl liegt).--Gunther 23:37, 17. Jan 2006 (CET)
- Naja, geeignet sind eigentlich beide Beispiele nicht! 1+3 micht, weil 1 das "neutrale Element" ist, und 5+7 nicht, weil es sich bei beiden Zahlen um Primzahlen handelt.
- Ich werde das ganze in meinem Parallel-Projekt Primzahlen in Wikibooks noch ausführlicher abhandeln. Dort nicht direkt unter Eigenschaften, sondern unter der Eigenschaft das eine Primzahl nur durch 1 und sich selbst teilbar ist. AFAIK gehören beide Dinge zusammen, bzw. ist das eine eine Folge des anderen (Widerspruch?).
- Zu 1.: Ich meine nicht, das diese falsche Aussage viel zu offensichtlich ist, wo Leute die 1 immer noch für eine Primzahl halten. --Arbol01 23:48, 17. Jan 2006 (CET)
- Ach ja, zu 2.: Theoretisch kann man, Analog zum naiven Primzahltest einen naiven Primzahltest benutztn, der die additiven Eigenschaften verwendet. Das mag zwar etwas esoterisch sein, aber nicht Abwegig. --Arbol01 23:50, 17. Jan 2006 (CET)
- Zum Gegenbeispiel: Jede natürliche Zahl (außer 1) lässt sich als Summe zweier teilerfremder Zahlen darstellen. Wenn man die 1 als Summand ausschließt, ist es für jede natürliche Zahl möglich (sogar mit einer Primzahl als einem der Summanden). Irgendwelche großen Zahlen suggerieren, dass es sich um ein seltenes Phänomen handelt.
- Zu Deinem Primzahltest: Das ist wegen eine triviale Umformung des "Primzahltestes", der für überprüft. Diese letztere Aussage ist erwähnenswert (endliche Körper usw.), das fehlt momentan.--Gunther 00:11, 18. Jan 2006 (CET)
- Danke für die indirekte Bestätigung meiner Vermutung (siehe etwas weiter oben). --Arbol01 00:17, 18. Jan 2006 (CET)
- Grrrr. "Es gibt noch mehr ziemlich triviale Aussagen über Primzahlen (z.B. ist die Differenz zweier Quadratzahlen höchstens dann eine Primzahl, wenn dazwischen keine weitere Quadratzahl liegt)"
- Diese triviale Eigenschaft wird in dem Faktorisierungsverfahren nach Fermat verewendet. Dabei funktioniert das Faktorisierungsverfahren nur mit ungeraden Zahlen. --Arbol01 23:53, 17. Jan 2006 (CET)
- Ich will damit nur sagen: Wir können nicht jede Aussage über Primzahlen hier im Artikel unterbringen, sondern wir müssen die wichtigen auswählen. Wenn Dir also nicht noch eine sinnvolle Anwendung einfällt, wäre ich dafür, den Abschnitt ganz zu entfernen.--Gunther 00:11, 18. Jan 2006 (CET)
- Das würde mich auch nicht umbringen! --Arbol01 00:15, 18. Jan 2006 (CET)
- Ich will damit nur sagen: Wir können nicht jede Aussage über Primzahlen hier im Artikel unterbringen, sondern wir müssen die wichtigen auswählen. Wenn Dir also nicht noch eine sinnvolle Anwendung einfällt, wäre ich dafür, den Abschnitt ganz zu entfernen.--Gunther 00:11, 18. Jan 2006 (CET)
- Wegen mir kann der Satz gern wieder rausgenommen werden, weltbewegend ist der Inhalt wirklich nicht. Ich habe das Gegenbeispiel lediglich eingefügt, um den redundanten Satz, den Arbol01 unbedingt im Artikel haben wollte, entfernen zu können.--MKI 11:41, 18. Jan 2006 (CET)
Satz verallgemeinern?
Könnte/sollte man diesen Satz:
- Für andere lineare Rekursionen gelten analoge, aber kompliziertere Aussagen, beispielsweise für die Fibonacci-Folge : Ist eine Primzahl, so ist durch teilbar; dabei ist
das Legendre-Symbol.
nicht dahingehend verallgemeinern?:
- Für andere lineare Rekursionen gelten analoge, aber kompliziertere Aussagen, beispielsweise für die allgemeine Lucas-Folge mit der Diskriminante gilt: Ist eine Primzahl, so ist durch teilbar; dabei ist
das Legendre-Symbol.
--Arbol01 15:31, 19. Feb 2006 (CET)
- Nicht ganz, es muss wohl sein, wenn ich mich nicht irgendwo verrechnet habe. Mit und dem quadratischen Reziprozitätsgesetz darf man das umdrehen. Für die sollte allgemein gelten. Allerdings sollte man das mMn nicht hier unterbringen, die Folgen sind wesentlich weniger bekannt und erfordern wesentlich mehr Erklärungsaufwand für einen marginalen Informationsgewinn: Es sagt viel mehr über die Folgen als über Primzahlen.--Gunther 18:43, 19. Feb 2006 (CET)
- Gut, dann also in Lucas-Folgen. Das macht dort einen kleinen Umbau notwendig. Die lucasschen Pseudoprimzahlen und die Fibonacci-Pseudprimzahlen fehlen ja sowieso noch. --Arbol01 01:35, 20. Feb 2006 (CET)
- Vor allem fehlt eine Angabe der Rekursionsformel bzw. eine Erklärung, was genau die Definition und was Eigenschaft der Folgen ist.--Gunther 01:41, 20. Feb 2006 (CET)
- Gut, dann also in Lucas-Folgen. Das macht dort einen kleinen Umbau notwendig. Die lucasschen Pseudoprimzahlen und die Fibonacci-Pseudprimzahlen fehlen ja sowieso noch. --Arbol01 01:35, 20. Feb 2006 (CET)
- Welche Rekursionsformel? Ich habe in Lucas-Folge mal die Sache mit den Primzahlen von den Eigenschaften abgetrennt. --Arbol01 01:59, 20. Feb 2006 (CET)
- bzw. V statt U.--Gunther 02:03, 20. Feb 2006 (CET)
- Welche Rekursionsformel? Ich habe in Lucas-Folge mal die Sache mit den Primzahlen von den Eigenschaften abgetrennt. --Arbol01 01:59, 20. Feb 2006 (CET)
- Ok, die Rekursionsfolgen füge ich morgen ein (oder übermorgen). Den Punkt Eigenschaften gibt es nicht mehr, da nur noch Definitionen übrig blieben. --Arbol01 02:15, 20. Feb 2006 (CET)
Die Aussage im Text zum Euklidischen Beweis ist falsch. Euklid konstruiert NICHT eine weitere Primzahl. Dazu ist sein Verfahren auch grundsätzlich nicht geeignet. Euklid führt lediglich die Annahme zum Widerspruch, es gebe nur endlich viele Primzahlen. Hartmut--89.247.45.36 15:35, 4. Mär. 2010 (CET)
- Bitte genau lesen: ... lässt sich eine weitere Primzahl konstruieren, .... Er konstruiert nicht sonder zeigt nur , wie man eine weitere Primzahl konstruieren könnte. Die Aussage im Artikel ist daher ok. --tsor 15:51, 4. Mär. 2010 (CET)
Euklidischer Beweis
4.3.2010 HartmutNorman
Es ist ein verbreitetes Mißverständnis, daß Euklid seinen Satz durch Konstruktion einer weiteren Primzahl beweisen würde. Tatsächlich ist sein Verfahren dazu nicht geeignet. Euklid führt lediglich die Annahme, es gebe nur endlich viele Primzahlen, zum Widerspruch. --HartmutNorman 15:50, 4. Mär. 2010 (CET)
8.3.06 - Wunderknabe
Der Abschnitt im Primzahl-Artikel zum euklidischen Beweis, dass es unendlich viele Primzahlen gibt, ist falsch:
"Geht man von der Annahme aus, dass nur endlich viele Primzahlen existieren, so folgt daraus die Existenz einer weiteren Primzahl"
Das ist totaler Unsinn, wenn man es nicht weiter ausführt. Dies habe ich mit einem Satz getan, ein gewisser Gunther meinte aber dies wieder entfernen zu müssen, weil es im Artikel zum satz von Euklid schon beschrieben sei.
Entweder man führt es hier aus, damit es richtig wird, oder man lässt nur den hinweis drin, dass Euklid den beweis geführt hat, nicht aber wie. (nicht signierter Beitrag von Wunderknabe (Diskussion | Beiträge) 17:33, 8. Mär 2006)
- Ich sehe nicht, was daran falsch sein soll, da störe ich mich deutlich mehr an "eine Zahl die [...] eine Primzahl sein kann, was einen logischen Widerspruch zur Annahme darstellt". Meinetwegen kann man das ein bisschen klarer formulieren, wie z.B. dass man zu jeder endlichen Menge weitere Primzahlen konstruieren kann und deshalb keine endliche Menge alle Primzahlen enthalten kann o.ä. Aber eine Beweisskizze ist in dieser Kürze nicht verständlich: Wer mit dem Begriff Teilerfremdheit umgehen kann, kennt den Beweis ohnehin schon.--Gunther 17:44, 8. Mär 2006 (CET)
"Ich sehe nicht, was daran falsch sein soll" - na dann erklärt mir mal einer, wie nur aus der Annahme, es gäbe endlich viele Primzahlen, folgt, es gäbe noch eine weitere. Das ist kein Beweis und auch keine kurze Erklärung eines solchen, sondern Unsinn. Wie auch immer, ich hab mal versucht es nun angemessen umzuformulieren. Ich hoffe das stößt auf Zustimmung.--Wunderknabe 21:52, 9. Mär 2006 (CET)
- Wie das folgt, steht nicht da, trotzdem ist das das Beweisprinzip. Die neue Formulierung gefällt mir aber auch besser, danke.--Gunther 11:18, 10. Mär 2006 (CET)
Definition
Die Eingangsdefinition ist zum Teil nicht korrekt.
- Eindeutigkeit der Primfaktorzerlegung: Jede natürliche Zahl lässt sich als Produkt von Primzahlen schreiben.
Das gilt nämlich nicht für die natürliche Zahl 1. HuckFinn 13:58, 13. Mai 2006 (CEST)
- Das Produkt von null Primzahlen ist gleich 1 (per definitionem).--Gunther 14:49, 13. Mai 2006 (CEST)
- Das mag für Mathematiker offensichtlich sein, in einer Enzyklopädie sollte man es vielleicht erwähnen. Sonst geht es anderen Lesern wie mir. HuckFinn 15:42, 13. Mai 2006 (CEST)
- Aber nicht an dieser Stelle, das lenkt nur ab. Es gibt ja einen eigenen Abschnitt dafür, Primzahl#Primfaktorzerlegung. Unter Primfaktorzerlegung#Eigenschaften steht es übrigens schon.--Gunther 16:07, 13. Mai 2006 (CEST)
- In Fundamentalsatz der Arithmetik allerdings steht "Der Fundamentalsatz der Arithmetik besagt, dass jede natürliche Zahl größer als eins eine Primfaktorzerlegung besitzt". Das ist nicht konsistent. HuckFinn 16:31, 13. Mai 2006 (CEST)
- Nein, ist es nicht. Ich leugne ja gar nicht, dass das für den Laien unintuitiv ist, und ich denke auch, dass man darauf durchaus Rücksicht nehmen kann. Aber in der Einleitung geht es nur um die wesentlichen Aspekte, da würde ich derartige technische Details lieber weglassen.--Gunther 17:03, 13. Mai 2006 (CEST)
- "Aufgrund dieses Satzes, also dass sich jede natürliche Zahl größer 1 durch Multiplikation von Primzahlen eindeutig darstellen lässt, ..." Wie läßt sich denn die 17 als "Multiplikation von Primzahlen" darstellen? Ist einfach "17" wirklich eine Multiplikation von Primzahlen? Für den Laien ist das tatsächlich schwer nachzuvollziehen. Vielleicht wäre eine kleine Bemerkung hilfreich, dass so eine Faktorzerlegung/ Multiplikation auch mit nur einem Faktor auskommt? -- Janquark 19:54, 6. Jul. 2009 (CEST)
- Nein, ist es nicht. Ich leugne ja gar nicht, dass das für den Laien unintuitiv ist, und ich denke auch, dass man darauf durchaus Rücksicht nehmen kann. Aber in der Einleitung geht es nur um die wesentlichen Aspekte, da würde ich derartige technische Details lieber weglassen.--Gunther 17:03, 13. Mai 2006 (CEST)
- In Fundamentalsatz der Arithmetik allerdings steht "Der Fundamentalsatz der Arithmetik besagt, dass jede natürliche Zahl größer als eins eine Primfaktorzerlegung besitzt". Das ist nicht konsistent. HuckFinn 16:31, 13. Mai 2006 (CEST)
- Aber nicht an dieser Stelle, das lenkt nur ab. Es gibt ja einen eigenen Abschnitt dafür, Primzahl#Primfaktorzerlegung. Unter Primfaktorzerlegung#Eigenschaften steht es übrigens schon.--Gunther 16:07, 13. Mai 2006 (CEST)
- Das mag für Mathematiker offensichtlich sein, in einer Enzyklopädie sollte man es vielleicht erwähnen. Sonst geht es anderen Lesern wie mir. HuckFinn 15:42, 13. Mai 2006 (CEST)
"Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Zahlen als Teiler, nämlich der Zahl 1 und sich selbst. Die kleinsten Primzahlen sind": So richtig gelungenes Deutsch ist das nicht gerade.
Wie wäre es mit:
Eine Primzahl p ist eine natürliche Zahl mit genau zwei natürlichen Zahlen als Teiler, nämlich 1 und p.
oder auch
Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Zahlen als Teiler, nämlich 1 und die Primzahl.
Am besten fände ich aber, die Definition inhaltlich so kurz wie möglich zu halten, wie man das auch sonst macht, und Aussagen separat zu nennen:
Definition:
Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen Zahlen als Teiler.
Folgerung: Die Teiler jeder Primzahl p sind 1 und p.
(nicht signierter Beitrag von 94.79.188.141 (Diskussion | Beiträge) 17:10, 24. Mär. 2010 (CET))
formel fuer n-te primzahl
Fehlerhaft ist die Aussage, es gäbe keine Formel, die, wenn man n einsetzt, die n-te Primzahl liefert. Es gibt durchaus derartige Formeln, nur haben sie keine Bedeutung, weil sie praktisch und theoretisch keinerlei Anwendungen finden. Eine Formel wurde im Zusammenhang mit einer Rätselaufgabe einmal hier erwähnt: http://www.matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=15181 Sie basiert im Wesentlichen auf dem Satz von Wilson, dass p genau dann eine Primzahl ist, wenn gilt. -- Johannes Hahn
4k +1 und 4k + 3
Hallo.
Dieser Absatz mach meiner Ansicht nach keinen sinn. Wenn man sagt "jede Primzahl (>2) ist entweder 4k +1 oder 4k +3", dann könnte man genausogut sagen dass jede Primzahl 2k +1 ist, oder einfach nur: Alle außer "2" sind ungerade...
Alternativ könnte man ja auch sagen: Jede Primzahl ist 2 oder 8k +1 oder 8k + 3 oder 8k + 5 oder 8k + 7...
bzw. jede Primzahl ist 2 oder 16k + 1 oder 16k + 3 oder 16k + 5 oder 16k + 7 oder 16k + 9 oder 16k + 11 oder 16k + 13 oder 16k + 15...
(--Killto 15:16, 28. Jun 2006 (CEST)
- Der besagte Satz geht doch noch weiter und wird mit nichttrivialem Sinn gefuellt. P. Birken 15:20, 28. Jun 2006 (CEST)
tonale musik
Hallo,
Ich würde gerne anregen, im Unterkapitel "Praktische Anwendung" Folgendes hinzu zufügen:
Alle tonale Musik beruht auf ganzzahligen Tonverhältnissen. Die Abstände bzw. Intervalle sind Ausdruck von ganzzahligen Proportionen: 4/2, 3/1, 10/9, 16/9, 81/80, 256/243 usw. Beim genaueren Hinsehen zeigt sich, dass alle Intervalle letztlich auf Primzahlen und ihren Potenzen beruhen. Jede Primzahl bringt eine neue Generation von Intervallen hervor. Die 2 alle Oktavverhältnisse, die 3 die Quintverhältnisse, die 5 die Terzverhältnisse, die 7 die Septverhältnisse usw.
Es ist nicht übertrieben zu sagen, dass alle gängige zumindest europäische Musik sich auf die Primzahlen 2, 3, 5 und 7 zurückführen lassen. Das scheint banal, ist es aber nicht. Die Integration jeder einzelnen Primzahl war ein Prozess über oft mehrere Jahrhunderte und ist natürlich alles andere als abgeschlossen. Die Realisierung der weiteren Primzahlen verlangt einiges Wissen und Können vom Spieler und Sänger und wird deshalb noch einige Zeit auf sich warten lassen. Dies ist Thema der Reinen Stimmung. --2357drache 19:48, 25. Feb. 2007 (CET)Benutzer:2357drache 19:44, 25.Febr. 2007
- Ich habe den Artikel freigegeben. Kannst ihn also bearbeiten. --tsor 20:51, 25. Feb. 2007 (CET)
Leonhard Euler hat die harmonischen Beziehungen der Töne mit Hilfe eines Tonnetzes mathematisch ausgedrückt: Jede Primzahl wird einer Dimension zugeordnet. So entsteht ein vieldimensionaler Verktorraum auf dessen Achsen die Potenzreihen der Primzahlen stehen. Im Zentrum steht p^0. Alle denkbaren Tonverhältnisse sind damit dargestellt.
Dieser Vektorraum dient zur Realisierung der Reinen Stimmung. (engl. just intonation).--2357drache 12:26, 24. Jun. 2009 (CEST)
Kleine Korrektur notwendig
Im Unterkapitel "Größte bekannte Primzahl" steht im 2. Absatz folgendes: "Die größte bekannte Primzahl war fast immer eine Mersenne-Primzahl, also von der Form 2^n − 1, da in diesem Spezialfall der Lucas-Lehmer-Test angewendet werden kann..."
Mersenne-Primzahlen sind Primzahlen der Form 2^p - 1, daher wäre es auch sinnvoll, diese Form anzugeben. (nicht signierter Beitrag von 212.183.35.179 (Diskussion) 17:27, 15. Sep 2006)
- Das ist nichts, das man hier erwähnen müsste.--Gunther 17:32, 15. Sep 2006 (CEST)
- p, n, x - ist doch egal. Es ist nur eine Variable die eben eine Primzahl sein soll :) - Wunderknabe 00:19, 16. Sep 2006 (CEST)
- Ich meinte: dass der Exponent eine Primzahl sein muss, ist nichts, das man an dieser Stelle erklären muss, das reicht in Mersenne-Primzahl.--Gunther 00:33, 16. Sep 2006 (CEST)
- p, n, x - ist doch egal. Es ist nur eine Variable die eben eine Primzahl sein soll :) - Wunderknabe 00:19, 16. Sep 2006 (CEST)
Weblinks
Warum wurde der Weblink auf die Vortragsreihe von Dr. Taschner entfernt?
Ich habe selten (eigentlich nie) eine informativere und dabei unterhaltsamere Heransgehensweise an das Thema erlebt. Den Link zu entfernen erachte ich als einen *deutlichen* Qualtitätsverlust für diese Seite und rege daher an, ihn wieder aufzunehmen. -- bg phaidros 12:59, 6. Dez. 2008 (CET)
Grössere Tabelle von Primzahlen
Mit Hilfe dieses Java-Applets kann man für natürliche Zahlen bis 1 000 000 000 000 (1 Billion) überprüfen, ob es sich um Primzahlen handelt... http://www.walter-fendt.de/m14d/primzahlen.htm (nicht signierter Beitrag von 87.161.222.189 (Diskussion | Beiträge) 20:36, 23. Jun. 2007 (CEST))
primzahl-programm
Falls Interesse besteht, kann das auf die Seite gelegt werden.
(Vorstehender nicht signierter Beitrag stammt von 85.0.186.243 (Diskussion • Beiträge) 13:50, 28. Sep 2006 (CEST))
- Programmcode fällt üblicherweise nicht unter "weiterführende Informationen", vgl. WP:WEB.--Gunther 13:55, 28. Sep 2006 (CEST)
Warum wurde der Weblink auf Plichta.de entfernt?
Jeder, der sich ernsthaft mit Primzahlen und deren Verteilung beschäftigt, wird sicherlich in den ausführlichen und fundierten Untersuchungen von Peter Plichta zu den Primzahlen fündig werden! Ein Weblink auf diese Seite ist für ein Online-Nachschlagewerk unverzichtbar! Der Einwand, dass damit die Meinung eines einzelnen übermässig repräsentiert wird, ist unzutreffend. Dann müsste man auch die Forschungen vieler anderer Wissenschaftler aus Wikipedia streichen! Zur Unterdrückung von Wissen ist doch Wikipedia nicht erdacht worden, oder?
- Ich habe den Link entfernt, weil sich die Seite dahinter nicht mit Primzahlen beschäftigt. --Stefan Birkner 19:51, 25. Mai 2007 (CEST)
- Zustimmung, Seite ist nicht braucbar. --NeoUrfahraner 19:52, 25. Mai 2007 (CEST)
Der Link führt auf eine Baustellenseite. Jedoch finden sich über das Flaggen-Symbol tatsächlich sehr interessante Informationen zu Primzahlen! Als direkter Link wäre eigentlich http://plichta.de/deutsch/vortrag.html angebracht. Daher ergänze ich diesen im Artikel.
- Auch dieser Vortrag genügt nicht den Anforderungen von WP:WEB. --NeoUrfahraner 00:44, 26. Jul. 2007 (CEST)
Vollständige Liste von Primzahlen
Was ist die größte Zahl, von der man alle Primzahlen kennt, die kleiner sind als diese Zahl? --Schnitte 16:58, 4. Mär. 2007 (CET)
- Diese Zahl existiert nicht. Angegeben wäre diese Zahl, dann könnte man sofort ohne großen Aufwand eine Zahl finden, für die man ebenfalls alle entsprechenden Primzahlen kennt. --Stefan Birkner 19:37, 5. Mär. 2007 (CET)
- Das überrascht mich jetzt sehr. Kannst du den entsprechenden Algorithmus skizzieren? --HuckFinn 19:40, 5. Mär. 2007 (CET)
- Sei die Menge aller Primzahlen kleiner . Überprüfe ob eine Primzahl ist. Wenn ja, dann ist die Menge aller Primzahlen kleiner , ansonsten ist es . --Stefan Birkner 19:47, 5. Mär. 2007 (CET)
- Das Argument würde für jedes x zutreffen, da man ja theoretisch alle y < x auf die Primzahleigenschaft überprüfen könnte. Die ursprüngliche Fragestellung, die sich auf aktuell vorhandenes Wissen und nicht auf potentiell erlangbares bezieht, wird damit aber verfehlt. --HuckFinn 19:54, 5. Mär. 2007 (CET)
- Nochmal: Die ominöse größte Zahl wird es nie geben, da ich zu jeder Zahl, die diese Eigenschaft hat, eine noch größere finden kann. --Stefan Birkner 20:55, 5. Mär. 2007 (CET)
(Ohne Einrückung) Natürlich kann man noch größere x finden. Die Ausgangsfrage bezog sich aber auf ein x, für das am 04.03.2007 um 16:58 Uhr alle kleineren Primzahlen bekannt waren. Mit diesem Zeitbezug ist das x wohldefiniert, von Kommunikationsschwierigkeiten mal abgesehen. --HuckFinn 21:02, 5. Mär. 2007 (CET)
- Das ist zwar definiert aber meines Erachtens uninteressant, sodass ich davon ausgehe, dass es nicht bekannt ist. --Stefan Birkner 21:11, 5. Mär. 2007 (CET)
- OK. Das ist eine Frage der Perspektive. Ich vermute, dem Ausgangsfrager ging es um eine Größenordnung - ist x mehr im Bereich 10^10, oder 10^20? Völlig uninteressant ist das ja nicht. Aus rein mathematischer Perspektive ist es natürlich wenig relevant. --HuckFinn 21:17, 5. Mär. 2007 (CET)
- Natürlich ist mir bekannt, dass es unendlich viele Primzahlen gibt. Im Artikel wird die größte bekannte Primzahl aufgeführt, die ist mindestens so uninteressant wie die von mir nachgefragte Zahl. Denn, wenn man, z.B für Verschlüsselungen, unbedingt eine Primzahl braucht, sind die sehr großen Primzahlen ungeeignet, denn die sind alle von der Form 2^$Maechtig_viel - 1. Sie sind daher relativ leicht zu erraten. Zu gebrauchen sind nur Primzahlen in einer Größenordnung, bei der man alle Primzahlen kennt. --Schnitte 07:55, 7. Mär. 2007 (CET)
- OK. Das ist eine Frage der Perspektive. Ich vermute, dem Ausgangsfrager ging es um eine Größenordnung - ist x mehr im Bereich 10^10, oder 10^20? Völlig uninteressant ist das ja nicht. Aus rein mathematischer Perspektive ist es natürlich wenig relevant. --HuckFinn 21:17, 5. Mär. 2007 (CET)
- Wenn es dir um Primzahl für beispielsweise RSA geht. Da ist die Vorgehensweise anders. Man erzeugt zufällig eine Zahl mit der gewünschten Bitlänge und testet anschließend, ob diese eine Primzahl ist. Das führt man solange durch, bis man eine Primzahl findet. Auf Grund des Primzahlsatzes erhält man in der Regel nach sehr wenigen Schritten eine Primzahl. Ansonsten hat die größte Primzahl den Vorteil, dass sie sich genau bestimmen lässt. Im Gegensatz zu der von dir gewünschten Zahl, findet man nicht so schnell eine weitere größere Primzahl. --Stefan Birkner 13:13, 7. Mär. 2007 (CET)
Ich finde, es wäre schon ganz interessant zu wissen, bis wohin zum gegenwärtigen Zeitpunkt die Liste der bekannten Primzahlen komplett ist und ab wo sie lueckenhaft wird. Gruß, Franz Halač 10:54, 8. Mär. 2007 (CET)
Meines Wissens gibt es keine Liste der bekannten Primzahlen. Darüber hinaus halte ich es für unwahrscheinlich, dass es eine solche jemals geben wird. --Stefan Birkner 12:06, 8. Mär. 2007 (CET)
Eine Liste müßte ja irgendwie und -wo gespeichert werden. Abschätzung: Große Festplatten haben ein Terabyte, also etwa 4*10^13 Bits Speicherplatz. Man nehme eine Million solcher Festplatten, also Google-Dimensionen, und unterstelle weiterhin, dass durch geeignet clevere Speicherung pro Primzahl 1 Bit und pro Nicht-Primzahl 0 Bit Speicherplatz verbraucht werden (völlig irreal). Dann kommt man auf eine speicherbare Liste in der Größenordnung von allen Primzahlen bis etwa 10^22. Wirklich irgendwo im Zugriff sind vermutlich alle Primzahlen bis maximal 2^32. --HuckFinn 13:23, 8. Mär. 2007 (CET)
- Irgendwie wird es merkwürdig. Es ist nicht so einfach zu entscheiden, ob eine Zahl eine Primzahl ist oder nicht. Angenommen, wir hätten so eine Primzahl, bei der alle kleineren Primzahlen bekannt sind. Die nächst größere Zahl ist mit Sicherheit keine Primzahl, denn sie läßt sich durch 2 teilen. Die dann folgende Zahl könnte eine Primzahl sein, dann hätten wir einen Primzahlzwilling. Ließe sich sofort ausschließen, wenn die Zahl durch 3 oder 5 oder 7 oder sonst eine "kleine" Primzahl teilen ließ. Aber was, wenn nicht? Wir sind sicherlich bei einer sehr sehr großenn Zahl. Da kann man nicht mal eben schnell Faktorisieren. Und alle bekannten Primzahlen aufmultiplizieren und 1 dazuaddiren geht nur in der Theorie und bei kleinen Zahlen leicht. --Schnitte 16:56, 8. Mär. 2007 (CET)
- Stichwort: Primzahltest. Bitte benutze diese Seite nur um Beiträge zur Ausgestaltung des Artikels zu hinterlassen. Für mathematische Diskussionen gibt es die einschlägigen Mathe-Foren. --Stefan Birkner 19:24, 8. Mär. 2007 (CET)
Fehler in Absatz 3 Primzahltests
10^9.000.000 unbekannte Primzahlen ist vielleicht ein bissl groß, da zwischen der größten und der 2.-größten bekannten Primzahl <10^700.000 natürliche Zahlen überhaupt liegen. (Der vorstehende, nicht signierte Beitrag stammt von 130.83.83.10 (Diskussion • Beiträge) NeoUrfahraner)
Wie rechnest Du? die größte bekannte Primzahl ist ca. , die zweitgrößte bekannte Primzahl ist ca. , die Differenz
- ,
die zweite Zahl ist praktisch Null gegenueber der ersten. Oder, um's mit kleineren Zahlen zu sagen:
und nicht --NeoUrfahraner 08:39, 5. Apr. 2007 (CEST)
- Die Diskussion sollte hier weiter geführt: Portal Diskussion:Mathematik#Größte bekannte Primzahl.
Was genau an der obigen Erklärung hast du nicht verstanden? --HuckFinn 09:23, 5. Apr. 2007 (CEST)
- Das frage ich mich auch. Baustein wieder raus; bitte nur mit nachvollziehbarer Begründung einstellen. --Scherben Fußball ist immer noch wichtig... 09:45, 5. Apr. 2007 (CEST)
"natürlicher Teiler" - Interner Link auf natürliche Zahl?
Hallo, sollte man im Lemma beim Wort "natürlich" (vor Teiler) nicht (als Definition) noch einen internen Link auf "natürliche Zahl" setzen? Gründe (aus meiner leihenhaften Sicht - bin bloß Jurist):
- 1. "natürlicher Teiler" ist nicht im Artikel "Teiler" definiert.
- 2. "natürlich" bedeutet im normalen Sprachgebrauch nicht, eine natürliche Zahl zu sein.
(Ich nehme an, das dies aber gemeint ist: "Natürlicher Teiler" = Ein Teiler, der eine natürliche Zahl - und nicht nur eine ganze Zahl - ist.)(Tschuldigung, hatte Unterschrift vergessen!) --pistazienfresser 12:49, 23. Aug. 2007 (CEST)
- Habe es mal umformuliert. --tsor 12:55, 23. Aug. 2007 (CEST)
- Und das ist jetzt wirklich besser geworden, Dank an Tsor und vor allem an Pistazienfresser. -- Jesi 13:19, 23. Aug. 2007 (CEST)
- Danke für die Lorbeeren, Jesi! Danke für die Umsetzung, Tsor! Möchte aber dennoch weiter fragen. Braucht man eigentlich das Wort "Teiler" in der Definition? Schließlich behandelt der Artikel, auf den in dem internen Link (zur Definition von Teiler) verwiesen ist, direkt nur die [Teilbarkeit], also die Substantivierung des Adjetivs "teilbar". Außerdem dürfte sich der Normalbürger eher unter dem Wort "teilbar" etwas vorstellen können, als unter dem Wort "Teiler". Sollte man deshalb nicht gleich "Teilbarkeit" oder zumindest "teilbar" als Definitionsbestandteil verwenden? Kann man insofern nicht statt (der Formulierung von Tsor) formulieren: (Zitat Anfang) Eine Primzahl ist eine natürliche Zahl, die durch genau zwei natürliche Zahlen teilbar ist, nämlich durch 1 und sich selbst. (Zitat Ende)? Oder impliziert das Adjektiv "teilbar" im Gegensatz zu "Teilbarkeit" und "Teiler" nicht, dass bei der Division kein Rest übrig bleibt?--pistazienfresser 18:29, 23. Aug. 2007 (CEST)--pistazienfresser 18:43, 23. Aug. 2007 (CEST)
- Und das ist jetzt wirklich besser geworden, Dank an Tsor und vor allem an Pistazienfresser. -- Jesi 13:19, 23. Aug. 2007 (CEST)
Übrigens: muss man nicht auch Primzahl#Warum_ist_die_Zahl_1_keine_Primzahl.3F ändern, wenn man die Definition oben ändert?--pistazienfresser 18:43, 23. Aug. 2007 (CEST)
- Ja, mit Letzterem hast du Recht, ich hab das gleich mal geändert. Mit dem darüber Stehenden (schöne Rechtschreibreform) kann ich mich (noch) nicht ganz so anfreunden, vielleicht muss man dazu noch einmal in sich gehen. -- Jesi 19:09, 23. Aug. 2007 (CEST)
Kürzeste Definition: System und Mathematik
Hi Leute, warum wird bei der mathematischen Definition von Primzahlen überhaupt auf den Bestandteil teilbar/Teilbarkeit/Teiler zurückgegriffen? Sollte man für ein möglichst übersichtliches System von Definitionen nicht immer versuchen, für eine Definition möglicht wenig andere Definitionen vorauszusetzen? Selbst auf den Begriff der Division sollte insofern aus meiner Sicht besser zu Gunsten der Multiplikation bzw. des Begriffs Produkt verzichtet werden (zumindest kannte ich bislang nur eine Definition der Division über die Multiplikation). Oder gibt es dann zuviel Formulierungsprobleme, um 1 als neutrales Element ausschließen? (Vorschlag1:) Eine Primzahl ist eine natürliche Zahl, die sich nur auf zwei Arten als Produkt unterschiedlicher natürlicher Zahlen darstellen lässt.(Vorschlag2:) Eine Primzahl ist eine natürliche Zahl, die sich auf genau zwei Arten als Produkt von natürlichen Zahlen darstellen lässt. (Nämlich p=1*p und p=p*1, bei 1 gibt es nur die eine Darstellung 1=1*1). In diese Richtung wurde schon etwas unter der 1. Konsequenz angedeutet. Wahrscheinlich gibt es für die Defintion über die Teilbarkeit viele tolle mathematische oder systematische Gründe. Vielleicht steckt aber auch einfach nur Tradition dahinter. Insofern könnte man aber eventuell noch das (möglichst schnell verständliche) Lemma von einer neuen Überschrift mathematische Definition der Primzahl trennen. --pistazienfresser 11:41, 24. Aug. 2007 (CEST)
- Na ja, man kann sich natürlich immer weiter in den "Urschleim" reinwühlen. Du könntest auch natürliche Zahl durch Element einer Menge, für die die Peano-Axiomen gelten ersetzen usw. Man kann innerhalb eines Gebäudes schon auf die vorhandenen Bausteine zurückgreifen. Und dein 2.Vorschlag eine natürliche Zahl, die sich auf genau zwei Arten als Produkt von natürlichen Zahlen darstellen lässt ist sowie nicht korrekt, weil ja auch p=1·1·p usw. geht (du müsstest dann das mehrfache Vorkommen des Faktors 1 ausschließen, warum darf er dann aber einmal auftreten) usw. Dein 1.Vorschlag ist etwas besser, kämpft auch mit dem Problem des Faktors 1, weil in der Mathematik die Zerlegungen 1·p und p·1 in der Regel aufgrund des Kommutativgesetztes der Multiplikation als identisch angesehen werden. Für dich kann ich dir ja die Definition Eine Primzahl ist eine natürliche Zahl, die sich nicht als Produkt natürlicher Zahlen größer 1 darstellen lässt empfehlen, für den Artikel würde ich aber die jetztige Version beibehalten. -- Jesi 23:56, 24. Aug. 2007 (CEST)
- Nachtrag: Ich hab gerade gesehen, dass die Definition, die ich oben zuletzt formuliert habe, im Artikel als Konsequenz aus der und als äquivalent zu der im Artikel angegebenen Definition drin ist. Dabei sollte man es sicher bewenden lassen. -- Jesi 01:39, 25. Aug. 2007 (CEST)
- Zum ersten Absatz>(Vorschlag2'-verbessert): Eine Primzahl ist eine natürliche Zahl, die sich auf genau zwei Arten (Permutationen) als Produkt von unterschiedlichen/'mindestes 2'/ natürlichen Zahlen darstellen lässt. (Nämlich p=1*p und p=p*1).--pistazienfresser 13:23, 25. Aug. 2007 (CEST)
- Zu Jesis Aussage:Du könntest auch natürliche Zahl durch Element einer Menge, für die die Peano-Axiomen gelten ersetzen usw. Man kann innerhalb eines Gebäudes schon auf die vorhandenen Bausteine zurückgreifen. Du hast offenbar nicht ganz verstanden, was ich meine: Es geht nicht darum, dass man in einer Definition ein Element der Definition durch dessen einfachste Möglichkeit einer Definition oder sogar durch eine andere Definitionsmöglichkeit ersetzen kann. Dadurch wird die Definition nicht einfacher. Es geht darum, dass in einem idealen System von Definitionen (letztlich also in einem idealen Normsystem) man versuchen sollte, für eine neue Definition auf möglichst wenig andere (folglich: grundlegendere) Definitionen zurückzugreifen. Ähnlich geht doch wohl jeder mathematischer Beweis vor: Man versucht jeweils einen 'Satz' auf möglichst wenige (und somit einfache mathematisch) 'Sätze' und Definitionen zurückzuführen. Falls sich hierfür jemand interessieren sollte, so kann er zu vergleichbaren (dort aber wohl schwierigeren) Versuchen auf dem Gebiet von Verhaltensanweisungen (Rechtsphilosophie/Rechtstheorie/Recht im weitesten Sinne) in dem Buch Reine Rechtslehre von Kelsen nachlesen. Um in Jesis Bild zu bleiben: Bei einem Gebäude sollten die oberen Teile möglichst sich auf den unteren Teilen abstützen. Andere z.B. ("freischwebende") Konstruktionsarten mögen zwar auch interessant sein, sind aber teilweise nicht besonders stabil (vgl.: Schwangere Auster). LG --pistazienfresser 13:23, 25. Aug. 2007 (CEST)
- Die im Artikel angeführte Definition von Primzahlen ist offenbar einfach historisch (im 20. Jhd.) gewachsen. Eine neue, mathematisch und Norm-logisch sinnvollere Definition einzuführen, ist nicht Sinn einer Enzyklopädie wie Wikipedia. Die Vorteile, die eine solche Definition für die Verallgemeinerung der Eigenschaften von Primzahlen in Bezug andere Zahlenmengen hätte, wird aber an dieser Stelle (im Wikibook zur Zahlentheorie) angedeutet: "Wie schon erwähnt sind Primzahlen und unzerlegbare Zahlen genau die gleichen. Die Unterscheidung wird aber interessant, wenn man zu allgemeineren Ringen übergeht und dort analog Primelemente und irreduzible Elemente definiert. Hier fallen die beiden Begriffe nicht immer zusammen. " --pistazienfresser 13:23, 25. Aug. 2007 (CEST)
- Zum Ausschluss des neutralen Elementes: Wenn man 1 einfach durch quasi ein Sondergesetz in der Definition (p≠1 oder p>1) ausschließt, provoziert dies natürlich die Frage nach dem Warum. Insofern sind die offenbar immer wieder von Laien (wie ich im Bezug auf Mathematik einer bin) gestellte Frage, ob 1 eine Primzahl ist, im Grunde die Frage danach, warum man 1 per Spezialdefinition aus der Menge der Primzahlen ausgeschlossen hat. Eine Antwort auf diese Laien-Frage, die etwas besser auf die Geschichte und den Sinn einer Definition eingeht und keine Ähnlichkeiten zu einem Zirkelschluss enthält, findet man im Wikibook zur Zahlentheorie. Sofern keine begründeten Einwände kommen, werde ich demnächst die derzeitige Passage in diesem Wikipedia-Artikel durch die Passage aus dem Wikibook ersetzen. --pistazienfresser 13:23, 25. Aug. 2007 (CEST)
- Also, ich komme ehrlich gesagt mit deinen Gedankengängen hier nicht mehr klar. Jeder deiner Versuche, die Definition zu versessern endet mit einer weniger einleuchtenden Fassung, jetzt willst du auch noch den Begriff der Permutation mit in Spiel bringen. Ich würde dir raten, dich hier nicht zu sehr reinzusteigern. Auch deine angekündigte Veränderung halte ich für nicht angebracht. Der Artikel ist von Mathematikern mit ausreichender Fachkenntnis erarbeitet worden (ich gehöre aber nicht zu den wesentlichen Bearbeitern), und ich denke mal, dass er jetzt einigermaßen "rund" ist, konkrete und kleinere Veränderungen sind natürlich immer zu erwarten, siehe dazu z.B. auch die nächste Überschrift. -- Jesi 14:15, 25. Aug. 2007 (CEST)
Kleiner Bearbeitungsvorschlag
Wollte nur anmerken, daß das Produkt zweier 500-stelliger Primzahlen (wie im Artikel erwähnt) nicht zwangsweise eine 1000-stellige Primzahl als Ergebnis hat. Dies ist logischerweise ein mögliches Ergebnis, aber als Aussage ansich falsch! (nicht signierter Beitrag von 91.141.38.131 (Diskussion) 23:43, 18. Sep. 2007)
- Stimmt, habs mal geändert. -- Jesi 00:05, 19. Sep. 2007 (CEST)
Da war Dein Kommentar "Der Artikel ist von Mathematikern mit ausreichender Fachkenntnis erarbeitet worden" (siehe Ende Absatz "Kürzeste Definition: System und Mathematik") wohl etwas vorschnell, oder? :-) Daher war dieser Spruch wohl nicht nur überheblich, sondern auch falsch! (nicht signierter Beitrag von 87.234.94.237 (Diskussion) 00:16, 4. Nov. 2007)
- Weder noch. -- Jesi 05:02, 4. Nov. 2007 (CET)
- auch wenns etwas spät ist: "Dies ist logischerweise ein mögliches Ergebnis" ist auch absoluter blödsinn
- wenn man zwei primzahlen (egal wieviele stellen sie haben) miteinander multipliziert, haben sie selbst als teiler 1, sich selbst UND jede der beiden faktoren und ist per defintion keine primzahl mehr - auch nicht möglicherweise und gewissen voraussetzungen (sofern man jetzt den wechsel der zahlenbasis und sonstige dinge ausser acht lässt --suit 10:12, 30. Jul. 2008 (CEST)
- nachtrag: zudem ist in dem absatz nie die rede von einer 999- oder 1000-stelligen primzahl, lediglich dass aus dieser 999- bis 1000-stelligen zahl die beiden ursprünglichen faktoren quasi nicht rückrechenbar sind --suit 10:14, 30. Jul. 2008 (CEST)
- Na ja, zur Erklärung und Beruhigung: Du beziehst dich sicher auf die Formulierung, dass das Produkt zweier 500-stelliger Primzahlen ... nicht zwangsweise eine 1000-stellige Primzahl als Ergebnis hat von oben. Das war hier in der Diskussion eine falsche Formulierung, es stand aber – wie du selbst erkannt hast – nie so im Artikel. Es ging mit dieser Bemerkung nur um die Ziffernanzahl des Produktes, und auch nur das wurde im Artikel verändert. -- Jesi 10:23, 30. Jul. 2008 (CEST)
Zu: "Warum ist die Zahl 1 keine Primzahl?"
Hallo,
da steht der Satz "Man könnte nun natürlich auch ein System definieren, in dem die 2 keine Primzahl ist (oder die 3 oder die 5 ...), doch solange man das herkömmliche System noch nicht völlig verstanden hat, sind diese Systeme nur für Mathematiker interessant."
Das ist doch totaler Quatsch, oder? Zahlen werden nicht als Primzahl definiert, sondern es gibt eine Definition für die Eigenschaft Primzahl, die von einigen Zahlen erfüllt wird und von anderen nicht. Man kann vieles vor sich hin definieren und ich kann auch meinen Hund "Prim" nennen, aber mit der Primeigenschaft hat das nichts zu tun, da gibt es eben nur beim Einheitselement Definitionsbedarf.
- Das kommt anscheinend von Benutzer:Modran http://de.wikipedia.org/w/index.php?title=Primzahl&diff=prev&oldid=2667900 . Ich frag bei ihm nach. --NeoUrfahraner 15:56, 10. Jan. 2008 (CET)
- Ich hab's jetzt entfernt und durch ein besseres Beispiel ersetzt. Worauf Modran nach meinem Verständnis hinauswill, ist, dass Definitionen willkürlich sind. Das von ihm angegebene Beispiel ist aber mehr irreführend als hilfreich, darum habe ich es durch die Null-hoch-Null Frage ersetzt, ähnlich Fragen sind z.B. auch, ob ein Ring ein Einselement haben muss oder ob 1/x bei x=0 unstetig oder undefiniert ist. --NeoUrfahraner 08:25, 11. Jan. 2008 (CET)
- Jap, die Ergänzung war furchtbar schwurbelig. Du hast es schön auf den Begriff "zweckmäßig" zusammengekürzt; vielleicht schon etwas zu kurz (ein Zweck ist immer subjektiv.) --Modran 06:53, 12. Jan. 2008 (CET) (p.s.: Es läuft doch letztlich darauf hinaus, daß die 1 das neutrale Element der Multiplikation ist, und man in der mathematischen Abstraktion immer versuchen sollte, alles wegzulassen, was keinen Einfluß hat. Von daher hat es eigentlich gar keine Ähnlichkeit mit 0hoch0, denn deren Definition ist eine zusätzliches Axiom, also keine Vereinfachung ...)
Die Frage "Warum ist die 1 keine Primzahl" ist in meinen Augen kein Thema für einen Absatz von 7 Zeilen. Wenn man sich nicht damit begnügen will, daß die Definition nunmal so lautet, kommt man direkt zur meta-mathemagischen Frage, warum man überhaupt Mathematik betreibt. Ich glaube nicht, daß man diese Frage demjenigen, der sie sich stellt, mit 2, 3 Sätzen beantworten kann. Die alternative Definition ersetzt "genau 2" durch "höchstens 2". Der Vorteil dieser Definition wäre ihre (scheinbar viel) größere Verallgemeinerung; der Nachteil ist, daß das System damit die haarscharfe Grenze zwischen trivial und komplex überschreitet. Zu diesem Thema hat Stephen Wolfram ein interessantes Buch geschrieben ... --Modran 07:28, 12. Jan. 2008 (CET)
- Ja, dieses Thema führt in der Tat zu philosophischen Fragen, auf die man im Artikel Primzahl aber IMHO nicht eingehen kann. Es reicht der Hinweis, dass es willkürlich aber (heute) unumstritten ist sowie ein, zwei (im Artikel sind es sogar drei) Gründe, warum man sich auf diese Konvention geeinigt hat. Ein wenig ausführlicher ist das noch im verlinkten Kapitel Wikibooks: Warum 1 keine Primzahl ist beschrieben. Was die metamathematischen Fragen betrifft, wäre es eventuell sinnvoll, diese in einem anderen Artikel oder an einem anderen Ort (Wikibooks?) zu diskutieren; wenn Du da was findest/schreibst, kann man durchaus aus dem Artikel Primzahl darauf verweisen und dafür den Verweis auf 0 hoch 0 weglassen. 0 hoch 0 ist mir dazu eingefallen, weil es zu dieser Streitfrage eine Diskussion direkt im Wikipedia-Artikel gibt; wenn Du oder irgendwer eine besseres Beispiel findest, kann man das von mir aus gerne austauschen. --NeoUrfahraner 08:14, 12. Jan. 2008 (CET)
"prim" als nur Adjektiv oder auch als Substantiv (Prim)?
Eben habe ich bei der Weiche Prim den Hinweis ergänzt:
bzw. das entsprechende Adjektiv (''prim'', kleingeschrieben)
.
In der Folge stellt sich für mich die Frage:
Wird "Prim" (ohne -zahl) in der deutschen (Fach-)Sprache überhaupt als Substantiv benutzt?
Es wäre schön, wenn jemand, der die Antwort weiß, ggf. die o. g. Weiche (noch weiter) verbessern könnte.
--pistazienfresser 11:13, 7. Jun. 2008 (CEST)
- Ich kenne "prim" in der Mathematik nur als Adjektiv. Ein Googletest auf "eine Prim" liefert im Gegensatz zu z.B. "ist prim" ebenfalls keine passenden Treffer. Ich habe Prim entsprechend umformuliert. --NeoUrfahraner 08:45, 8. Aug. 2008 (CEST)
Frage zu Regelmäßigkeiten bei Primzahlen
Als ich mir ein kleines Tool zur Berechnung von Primzahlen programmiert habe, sind mir durch Zufall in der Liste folgende Regelmäßigkeiten aufgefallen.
907
9907
99907
999907
9999907
991
99991
9999991
nun habe ich im Netz gesucht ob es dafür bereits Erklärungen oder Widerlegungen gibt, ich habe aber leider nichts gefunden. Vielleicht gibt es hierzu ja auch eine unbewiesene Hypothese oder ähnliches oder ich habe einfach einen Fehler in meinem Programm. Wäre schön wenn mir jemand helfen könnte. --Haut 20:44, 7. Aug. 2008 (CEST)
Welche Regelmäßigkeit meinst Du? Dass 99999907 durch 7 teilbar und 99999999999999991 durch 43 teilbar ist? --NeoUrfahraner 22:02, 7. Aug. 2008 (CEST)
Eigenschaften von Primzahlen
So beginnt der Abschnitt: Mit Ausnahme der Zahl 2 sind alle Primzahlen p ungerade, denn alle größeren geraden Zahlen lassen sich außer durch sich selbst und 1 auch noch (mindestens) durch 2 teilen.
Ich finde es nicht besonders wichtig, das hervorzuheben. Ungerade bedeute ja einfach nur nicht durch zwei teilbar. Man könnte genauso gut anfangen mit: Mit Ausnahme der Zahl 3 sind alle Primzahlen p nicht durch 3 teilbar, denn alle größeren durch drei teilbaren Zahlen lassen sich außer durch sich selbst und 1 auch noch (mindestens) durch 3 teilen. --Jobu0101 11:30, 3. Sep. 2008 (CEST)
- Ganz streng genommen hast du sicher Recht, und diese EIngenschaft ist auch nicht soooo wichtig. Aber die geraden/ungeraden Zahlen ist nun mal die "bekannteste" Zerlegung der natürlichen Zahlen. -- Jesi 13:14, 3. Sep. 2008 (CEST)
Zwei neue Mersenne-Primzahlen
Siehe: http://www.mersenne.org/prime.htm -- La Corona • ?! 16:53, 13. Sep. 2008 (CEST)
- Da steht aber nirgends, dass diese Primzahlen mehr als 10 Millionen Stellen haben oder dass die EFF ihren Preis vergeben hätte. --Stefan Birkner 16:55, 13. Sep. 2008 (CEST)
- Deswegen habe ich es ja auch auf der Disk geschrieben. Bei der Zeit, die für die Verifikation notwendig war, gehe ich aber davon aus, das es über 10 Mio Stellen sein werden. Dann werde ich wohl die 100.000$ nicht mehr gewinnen :-( -- La Corona • ?! 16:58, 13. Sep. 2008 (CEST)
- 37.156.667*ln(2)/ln(10) = 11.185.271,3, da muss man nicht lange auf eine Rechnung warten um rauszufinden, wieviele Stellen eine Zahl hat. Meiner Meinung nach ist M37156667 keine Rekordprimzahl, da sie später Entdeckt wurde. Da sie von GIMPS gleichzeitig mit M43112609 bekanntgegeben wurde und M43112609 eindeutig größer ist, ist sie die einzige Rekordprimzahl. --PapaNappa 21:24, 16. Sep. 2008 (CEST)
- Als ich meinen oberen Kommentar abgegeben hatte, war von GIMPS nur die Rechenzeit für die Überprüfung der Primzahl-Eigenschaft veröffentlicht worden - Die Zahl selbst noch nicht. Inzwischen ist natürlich klar, das beide über 10 Mio Stellen haben. Die kleinere der beiden Mersenne-Primzahlen habe ich aus der Liste entfernt. -- La Corona • ?! 22:27, 16. Sep. 2008 (CEST)
- 37.156.667*ln(2)/ln(10) = 11.185.271,3, da muss man nicht lange auf eine Rechnung warten um rauszufinden, wieviele Stellen eine Zahl hat. Meiner Meinung nach ist M37156667 keine Rekordprimzahl, da sie später Entdeckt wurde. Da sie von GIMPS gleichzeitig mit M43112609 bekanntgegeben wurde und M43112609 eindeutig größer ist, ist sie die einzige Rekordprimzahl. --PapaNappa 21:24, 16. Sep. 2008 (CEST)
- Deswegen habe ich es ja auch auf der Disk geschrieben. Bei der Zeit, die für die Verifikation notwendig war, gehe ich aber davon aus, das es über 10 Mio Stellen sein werden. Dann werde ich wohl die 100.000$ nicht mehr gewinnen :-( -- La Corona • ?! 16:58, 13. Sep. 2008 (CEST)
Was macht auf der Liste der Rekordprimzahlen? --NeoUrfahraner 18:57, 16. Sep. 2008 (CEST)
- Beide Primzahlen sind von GIMPS gleichzeitig veröffentlicht worden - auch wenn die kleinere der beiden zwei Wochen später an GIMPS gemeldet worden ist (während die Überprüfung der anderen noch nicht abgeschlossen war). Jetzt kann man sich natürlich streiten, ob die kleinere dann jemals eine "Rekordprimzahl" war. Mir ist das relativ egal. -- La Corona • ?! 20:50, 16. Sep. 2008 (CEST)
- Jetzt gefällt's mir besser. Auf Mersenne-Primzahl bleibt sie natürlich stehen, dort finden sich noch 2 andere, die in der falschen Reihenfolge entdeckt wurden. --NeoUrfahraner 22:14, 16. Sep. 2008 (CEST)
- Dann habe ich ja zumindest noch die Chance in eine Liste aufgenommen zu werden - wenn ich schon die 100.000 Dollar nicht kassiert habe - und für die 1.000.000 Dollar-Prämie hardwaremäßig unterentwickelt bin ;-) -- La Corona • ?! 22:36, 16. Sep. 2008 (CEST)
- Jetzt gefällt's mir besser. Auf Mersenne-Primzahl bleibt sie natürlich stehen, dort finden sich noch 2 andere, die in der falschen Reihenfolge entdeckt wurden. --NeoUrfahraner 22:14, 16. Sep. 2008 (CEST)
Jetzt ist dieser Thread schon fast ein Jahr alt. Klickt man bei der Electronic Frontier Foundadion auf Status, heißt es dort immer noch, die größte bekannte Primzahl sei 2^6972593-1 mit 2 Mio. Ziffern. Was verhindert denn die Verleihung der ausgelobten Summe? Wird die Primalität immer noch geprüft? --Rat 18:48, 7. Sep. 2009 (CEST)
- Vielleicht liegt es daran: 4.F Your claim must include a citation and abstract of a published paper that announces the discovery and outlines the proof of primality. The cited paper must be published in a refereed academic journal with a peer review process that is approved by EFF. Schlimmer ist allerdings, dass schon wieder auf der Liste steht, obwohl diese Zahl nie Rekordprimzahl war. --NeoUrfahraner 11:20, 8. Sep. 2009 (CEST)
- Ich habe wieder entfernt. --NeoUrfahraner 11:22, 8. Sep. 2009 (CEST)
Verteilung der Primzahlen
Ich bekomme den Eindruck nicht los, dass Georg Friedrich Bernhard Riemann auch etwas wichtiges über die Primzahlen gesagt hat. Könnte jemand mal hier etwas Nachvollziehbares schreiben?
Schöne Grüße, --2357drache 10:12, 25. Jun. 2009 (CEST)
- du meinst die Riemannsche_ζ-Funktion --suit 10:49, 25. Jun. 2009 (CEST)
Klar. Was sonst? Meines Erachtens besonders interessant, weil sie nach wie vor unbewiesen ist. --2357drache 15:00, 26. Jun. 2009 (CEST)
Noch eine Kleinigkeit zu diesem Absatz: Es findet sich dort der Satz "k durchläuft jeweils die nichtnegativen natürlichen Zahlen", das ist irreführend - natürliche Zahlen sind stets nichtnegativ. --Danol 13:09, 1. Jan. 2010 (CET)
Nicht-Gerade Primzahl
Mit Ausnahme der Zahl 2 sind alle Primzahlen p ungerade, denn alle größeren geraden Zahlen lassen sich außer durch sich selbst und 1 auch noch (mindestens) durch 2 teilen. <-- Das ist doch ein weißer Schimmel. Gerade oder ungerade zu sein ist in diesem Zusammenhang nicht wirklich eine herausragende Eigenschaft. Gerade zu sein bedeutet doch den Teiler 2 zu haben, was nur auf die Primzahl 2 zutrifft. Man könnte genauso schwafeln, dass mit Ausnahme der Zahl 3 keine weitere Primzahl durch 3 teilbar ist... (nicht signierter Beitrag von 145.228.2.96 (Diskussion | Beiträge) 16:34, 5. Jan. 2010 (CET))
- Könnte man, da die Aufteilung in gerade und ungerade Zahlen aber nunmal üblich und oft auch sinnvoll ist, wird hier eben angegeben dass die Menge der Primzahlen Teilmenge der ungeraden Zahlen ist. Da die durch 3 teilbare Zahlen keine so herausragende Rolle spielen wird da auf den entsprechenden Kommentar verzichtet. Wo ist das Problem? --Danol 16:41, 13. Jan. 2010 (CET)
- Also ich sehe es ähnlich wie 145.228.2.96. Sei n eine natürliche Zahl, dann kann man die natürlichen Zahlen in zwei Mengen aufteilen. Einmal die Menge der Zahlen, die Vielfache von n sind und einmal der Rest. Falls n nicht prim ist, dann sind in der ersten Menge keine Primzahlen, ansonsten nur eine. Das gilt aus ersichtlichen Gründen für jedes n. Insbesondere für n=2. Nur weil es da eine Bezeichnung gibt (gerade, bzw. ungerade), ist das keine herausragende Eigenschaft. Man sollte höchstens den allgemeineren Sachverhalt schildern und dann n=2 als Beispiel anführen. --Jobu0101 15:30, 7. Feb. 2010 (CET)
- Die 2 ist die kleinste Primzahl. Ich würde sagen: und damit auch die Wichtigste! Weil sie der häufigste/ wichtigste Teiler in der Menge der natürlichen Zahlen ist.
- Die Menge der durch 3 teilbaren Zahlen ist 1/6 kleiner als die Menge der durch 2 teilbaren Zahlen.
- Die Menge der durch 5 teilbaren Zahlen ist 2/15 kleiner als die Menge der durch 3 teilbaren Zahlen.
- usw.
- "2 ist die einzige gerade Primzahl" ist trotzdem in meinen Augen ein "weißer Schimmel"! --2357drache 17:56, 3. Apr. 2010 (CEST)
- Die von dir genannten Mengen sind alle unendlich und gleich mächtig, oder? --Rat 18:08, 3. Apr. 2010 (CEST)
Enzyklopädie
Wikipedia umfasst als Enzyklopädie alle relevanten Fachgebiete. Daher sollte Wikipedia nicht nur von Experten des jeweiligen Fachgebiets, sondern von jedem durchschnittlich gebildeten Menschen benutzbar sein.
Eine einführende Kurzbeschreibung eines mathematischen Fachbegriffs sollte daher nach meiner Meinung möglichst wenige nicht allgemein bekannte mathematische Begriffe enthalten. Ein Mathematiker weiss schließlich ohnehin was eine Primzahl ist. Ein Laie weiss aber z.B. nicht unbedingt was natürliche Zahlen sind.
Die beste Kurzbeschriebung in diesem Sinne scheint mir:
Primzahlen sind die ganzen Zahlen 2, 3, 5, 7, 11,..., die nur durch sich selbst und eins teilbar sind.
Franz Scheerer :(nicht mit einer Zeitangabe versehener Beitrag von Fsswsb (Diskussion | Beiträge) 13:12, 15. Mär. 2006 (CET))
- Ich kann nicht erkennen, wieso das verstaendlicher sein soll als die aktuelle Einleitung. Du kannst uebrigens mit ~~~~ unterschreiben. --DaTroll 13:21, 15. Mär 2006 (CET)
Änderungen von Fsswsb
Eine Enzyklopädie umfasst alle Fachgebiete. Schon aus diesem Grund richtet sie sich nicht an den Experten für ein Fachgebiet. Einem Mathematiker zu erklären was eine Primzahl ist, bedeutet Eulen nach Athen zu tragen.
Daher ist der Versuch hier bereits in der Einleitung eine mathematisch höchst exakte Definition zu liefern unsinnig. Primzahlen sind nicht teilbare Zahlen. Klar, alle Zahlen sind mathematisch exakt gesprochen durch 1 und sich selbst teilbar und auch die 1 ist nur durch sich selbst und 1 teilbar. Auch diese Aussage ist nicht ganz astrein, aus Sicht eines Mathematikers, da eine ganze Zahl selbstverständlich immer durch unendlich viele Brüche teilbar ist.
Die 1 ist keine Primzahl. Dies ist schlicht eine Definition, die zu hinterfragen wenig Sinn ergibt.
Ich werden mal versuchen den Artikel etwas sinnvoller zu gestalten, auch wenn die Änderungen wieder entfernt werden sollten.
Benutzer: Fsswsb (nicht mit einer Zeitangabe versehener Beitrag von Fsswsb (Diskussion | Beiträge) 13:22, 25. Mär. 2006 (CET))
- Auch die vorherige Definition hat einem Laien klar gemacht, was eine Primzahl ist, darüberhinaus hat sie bereits das wesentliche in der Einleitung zusammengefasst. Eine Enzyklopädie ist vor allem ein Nachschlagewerk, und wer nachschlagen will, was das besondere an Primzahlen ist, der sollte das erfahren, ohne sich für 10 Seiten Fliesstext wühlen zu müssen. Auch ansonsten kann ich in Deinen Änderungen keine Verbesserung des Artikels erkennen. Bitte respektiere doch etwas mehr die Arbeit früherer Autoren, bevor Du Artikel komplett umschreibst. --DaTroll 15:08, 25. Mär 2006 (CET)
Ihr solltet Euch schämen -- Antrag: Dieser Artikel "Primzahl" sollte entsperrt werden
In der englischsprachigen Wikipedia ist der Artikel Prime number seit eh und je frei zu bearbeiten. Niemand hat dort die Einleitung zum Artikel seit langer Zeit verändert, weil die Leser keinen Grund dafür gefunden haben. Der deutschsprachige Artikel zum Thema ist seit wenigstens 6 Monaten gesperrt, ohne daß für diese Sperrung gegenwärtig ein Grund vorhanden wäre. Wenn ich von Sperrung rede, dann meine ich: Gesperrt für jeden nicht angemeldeten Benutzer der Wikipedia. Soweit ich das Prinzip der Wikipedia verstanden habe, ist sie frei zugänglich für alle Leser und Schreiber. Wer gegen dieses Prinzip verstößt, der muß gute Gründe dafür anfügen können. Vielleicht liegt es an der freien Zugänglichkeit des englischsprachigen Wikipedia-Artikels "prime number", daß eben dieser Artikel den deutschsprachigen in den Schatten stellt. Falls nicht innerhalb von 30 Tagen von heute an ( also am 18. September 2006) dieser Artikel wieder frei zugänglich wird, werde ich einen Antrag stellen, welcher den oder die Sperrer zur Rechenschaft zwingen wird. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) (18082006) (nicht signierter Beitrag von 84.148.78.58 (Diskussion | Beiträge) 09:55, 18. Aug. 2006 (CEST))
PS: Nebenbei: Ich habe nicht vor, nach der Entsperrung irgendetwas an diesem Artikel zu ändern, nur sollte jemand unter den Admins aufwachen und nochmals nachlesen, worin eine freie Enzyklopädie besteht. (nicht signierter Beitrag von 84.148.78.58 (Diskussion | Beiträge) 14:44, 18. Aug. 2006 (CEST))
Prz.-Konstellationen
Es gibt auch Primzahldrillinge, auch -Triplets!
Anm.: in der engl-Wikip. gibt es noch Konstellationen wie Cousin-Primzahlen (p;p+4), sexy Primazahlen (p;p+6) [nach lat. 6 = sex], quinruplets [oder so ähnlich] (Fünflinge(?)) ,... (nicht signierter Beitrag von 217.248.87.51 (Diskussion | Beiträge) 09:46, 7. Jun. 2008 (CEST))
- Könnte bitte jemand bei Primzahlkonstellationen "Primzahldrilling" ergänzen??!! (nicht signierter Beitrag von 217.248.87.246 (Diskussion | Beiträge) 14:21, 4. Jul. 2008 (CEST))
"Lemma von Euklid"
Hier wird bei Wiki darauf verwiesen, dass diese Seite nicht vorhanden ist. Wahrscheinlich wird fälschlicherweise davon ausgegangen, dass Lemma von Euklid ein Eigenname ist. In meinen Augen falsch. Lemma/ta ist sind mathematische Hilfsätze. Einer davon wird in diesem Artikel zitiert. Dieser wurde von Euklid von Alexandria formuliert und würde übersetzt einfach "Hilfsatz des Euklid" heissen. (nicht signierter Beitrag von 93.135.168.64 (Diskussion | Beiträge) 09:39, 7. Feb. 2009 (CET))
- Nein. Lemma von Euklid ist ein feststehender Begriff. -- Stefan Birkner 11:57, 7. Feb. 2009 (CET)
dieser artikel scheint mit redundant zum absatz Formeln zur Generierung von Primzahlen .. allerdings kenne ich mich eher nicht aus und überlasse daher euch das vergnügen ggf. anpassungen vorzunehmen ;) ...Sicherlich Post 12:19, 18. Mär 2006 (CET)
- Nein ist nicht redundant. --NeoUrfahraner 13:57, 11. Feb. 2011 (CET)
- Muss ich noch was dazuschreiben, damit es automatisch archiviert wird? --NeoUrfahraner 13:57, 11. Feb. 2011 (CET)
(zurückgesetzt. "genau zwei" impliziert "verschieden")
Ach ja ?!
Es zeugt von Sprachschluderei, in einer Definition folgendes zu sagen:
- "Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen
Teilern, nämlich 1 und sich selbst."
Erstens: "nämlich" bezeichnet die Namensgebung, nicht die Definition.
Zweitens: "1 und sich selbst." reicht nicht hin, weil "sich selbst" undefiniert ist.
Drittens: Was eine Definition nicht klarer macht, schwächt diese Definition.
Viertens: Um eine Definition zu veranschaulichen, verwendet man Beispiele.
Fünftens: Beispiele zur Veranschaulichung einer Definition sind nicht Teil dieser Definition.
Sechstens: Die Definition einer Primzahl lautet:
- "Eine Primzahl ist eine natürliche Zahl mit genau zwei natürlichen
Siebtens: Ein Beispiel könnte lauten: "Diese Teiler sind eins und die Primzahl selbst"
Achtens: Anstelle von "eins" kann man auch "1" und anstelle von "Primzahl selbst" kann man auch "Primzahl" schreiben.
Neuntens (3 mal 3): Wenn jemand die gegenwärtige Einleitung liest, dann kann sie sich wohl einen Reim darauf machen. Aber wir sind keine Poeten, also verzichten wir besser auf schlechte Reime. Hans Rosenthal (ROHA) (hans.rosenthal AT t-online.de -- ersetze AT durch @ ) (09042006) PS: (In Klammern: Von der lächerlichen Seitensperrung will ich hier erst gar nicht reden.) (nicht signierter Beitrag von 84.148.96.94 (Diskussion | Beiträge) 07:57, 9. Apr. 2006 (CEST))
- Die angesprochene Kritik sollte sich mit der neuformulierten Einleitung erledigt haben.--KMic 12:53, 11. Feb. 2011 (CET)
- Und mit zwei signierten Beiträgen sollte der Abschnitt auch im Archiv verschwinden.--KMic 12:55, 11. Feb. 2011 (CET)
wozu noch groessere primzahlen?
haie,
bei der praktischen Anwendung steht etwas von Kryptographie; nur wozu braucht man dann noch größere Primzahlen? ist es das streben nach dem rekord oder gibt es auch richtigen Nutzen daraus? wenn ja sollte der in den artikel (und es würde mich auch interessieren ;) ) ...Sicherlich Post 23:30, 6. Sep 2006 (CEST)
- Ich denke, es ist tatsächlich das "streben nach dem rekord" als hauptsächliche Motivation. Bei der Kryptographie benötigt man große Primzahlen mit etwa 100 Dezimalstellen, nicht aber die jeweils größten.--KMic 15:52, 11. Feb. 2011 (CET)
- Wird eine Signatur ohne "--" eigentlich vom Archivierdienst als eine solche erkannt? Egal, nun sind es zwei.--KMic 15:54, 11. Feb. 2011 (CET)
- Kleine Anmerkung dazu: Hier gilt wohl auch "Der Weg ist das Ziel". Die Rekordprimzahlen an sich sind nicht interessant, sehr wohl aber der Berechnungsweg (mathematischer Algorithmus, z.B. Lucas-Lehmer Test, Umsetzung in Software, z.B. FFT und Hardware, z.B. Verteiltes Rechnen). --NeoUrfahraner 18:33, 11. Feb. 2011 (CET)
Drei Bearbeitungs-Vorschläge
Ich habe drei Änderungsvorschläge zu dem Artikel, den ich aber nicht selbst bearbeiten kann. Vielleicht nimmt sich mal jemand dieser Vorschläge an (falls diese sinnvoll erscheinen).
1. In "Eigenschaften von Primzahlen" würde ich folgende Ergänzung (kursiv) vorschlagen:
Jede Primzahl mit Ausnahme der 2 lässt sich einer der beiden Klassen „Primzahl der Form 4k + 1“ oder „Primzahl der Form 4k + 3“ zuordnen, wobei k eine natürliche Zahl ist. Darüber hinaus hat jede Primzahl p > 3 die Form p = 6k + 1 oder p = 6k - 1, wobei k eine natürliche Zahl ist. Nach dem dirichletschen Primzahlsatz gibt es in jeder dieser vier Klassen unendlich viele Primzahlen.
2. In "Formeln zur Generierung von Primzahlen" würde ich vor dem bisherigen ersten Satz noch einen Link und ein kurzes Illustrationsbeispiel zum Sieb des Eratosthenes eingefügt. Ich denke, dass dieser Algorithmus in einem Artikel über Primzahlen erwähnt werden sollte, und obwohl im verlinkten Artikel alles erklärt ist, kann man sicher hier an Ort und Stelle ein kleines Beispiel anführen, um (ohne Nachzuschlagen) die Arbeitsweise des Algorithmus zu verstehen. Das könnte etwa so aussehen:
Einer der ältesten Algorithmen zur Bestimmung von Primzahlen ist das Sieb des Eratosthenes, bei dem nacheinander aus einer Liste der natürlichen Zahlen >1 die Zahlen gestrichen werden, die Vielfache der jeweils kleinsten noch nicht gestrichenen Zahl sind. Dadurch bleiben die Primzahlen (innerhalb der Ausgangsliste) übrig. Gehen wir z.B. von allen Zahlen <=20 aus, so werden in der Liste
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
alle durch 2 teilbaren Zahlen gestrichen:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
und nach Streichung der durch 3 teilbaren Zahlen:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Als nächstes kämen die Streichungen der durch 5 bzw. 7 teilbaren Zahlen, dabei fallen aber keine weiteren Zahlen mehr weg, und die Vielfachen der nächsten noch nicht durchgestrichenen Zahlen (11, 13, usw.) liegen schon über dem Intervallende 20, so dass auch dadurch keine Zahlen mehr wegfallen. Deshalb erhält man als Primzahlen unter 21 die Zahlen
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20.
3. In "Primzahllücken" würde ich vor dem Link zu Primzahllücken noch den Satz über beliebig große Lücken einfügen, das wird zwar auch im verlinkten Artikel bewiesen, aber man kann sicher auch schon hier auf die Tatsache hinweisen. Also (Ergänzung kursiv):
Allgemein schwankt die Anzahl der zusammengesetzten Zahlen zwischen zwei beliebigen aufeinanderfolgenden Primzahlen. Und obwohl es unendlich viele Primzahlen gibt, gibt es auch beliebig große Lücken zwischen aufeinander folgenden Primzahlen. Siehe Primzahllücke.
--Jesi 16:34, 23. Jul. 2007 (CEST)
- zu 1: Steht bereits wörtlich so im Artikel
- zu 2: Nein, der Algorithmus wird im Artikel Sieb des Eratosthenes hinreichend gut erklärt, sogar mit grafischer Animation.
- zu 3: Steht bereits sinngemäß im Artikel --KMic 23:23, 11. Feb. 2011 (CET)
Definition und Äquivalenz
Ich hab mir im Zusammenhang mit der hier darüber stehenden Diskussion nochmal die Definition und die darauf folgenden Ausführungen angesehen und bin der Meinung, dass nur die erste Aussage eine wirklich äquivalente Definitionsmöglichkeit liefert. Die beiden anderen setzen ja schon den Begriff der Primzahl voraus und ich sehe auch sonst keine Möglichkeit, mit Hilfe dieser Sätze den Begriff Primzahl (sinnvoll) zu definieren. Ich hab die Formulierungen deshalb mal geändert. -- Jesi 14:07, 25. Aug. 2007 (CEST)
- Nicht mehr nachvollziehbar, was damals damit gemeint war. Scheint sich aber erledigt zu haben.--KMic 13:01, 11. Feb. 2011 (CET)
Praktische Anwendungen der PFZ
Sollte das nicht eher unter Primfaktorzerlegung stehen als hier? Es kam eine Anfrage in der Auskunft von jemandem, der unter PFZ nachgesehen und es nicht gefunden hatte. --Grey Geezer nil nisi bene 23:40, 27. Sep. 2009 (CEST)
- Wurde wohl zwischenzeitlich mal geändert: Primfaktorzerlegung#Praktische_Anwendung. Im Primzahlartikel selbst kann ich außer dem letzten Satz der Einleitung nichts über Anwendung derselben oder von Primfaktorzerlegungen finden. Sollte also erledigt sein.--KMic 23:04, 11. Feb. 2011 (CET)