Eine empirische Verteilungsfunktion – auch Summenhäufigkeitsfunktion, (empirische) Verteilungsfunktion der Stichprobe oder Stichprobenverteilungsfunktion[1] genannt – ist in der beschreibenden Statistik und der Stochastik eine Funktion, die jeder reellen Zahl den Anteil der Stichprobenwerte, die kleiner oder gleich sind, zuordnet. Die Definition der empirischen Verteilungsfunktion kann in verschiedenen Schreibweisen erfolgen.

Definition

Bearbeiten

Allgemeine Definition

Bearbeiten

Wenn   die Beobachtungswerte in der Stichprobe (die Stichprobenwerte) sind, dann ist die empirische Verteilungsfunktion definiert als

 ,

wobei   die Indikatorfunktion einer Menge   bezeichnet, d. h.

 .
 
Empirische Verteilungsfunktion für unklassierte Daten

Ihre Wahrscheinlichkeitsfunktion ist

 

wobei   das Dirac-Maß ist.

Alternative Darstellungen

Bearbeiten
  • Mit   seien die aufsteigend geordneten Beobachtungswerte bezeichnet – sie bilden die so genannte geordnete Stichprobe –, dann ist
 
  • Alternativ lässt sich die empirische Verteilungsfunktion mit den beobachteten, voneinander verschiedenen Merkmalswerten   und den zugehörigen relativen Häufigkeiten   in der Stichprobe bestimmen:
 
Die Funktion   ist damit eine monoton wachsende rechtsstetige Treppenfunktion mit Sprüngen der Höhe   an den Stellen  .
  • Eine alternative Darstellung, die manchmal auch zur Definition verwendet wird, ergibt sich mit
 
Während die erste Summe verdeutlicht, dass die empirische Verteilungsfunktion   an jeder Stelle   ein arithmetischer Mittelwert der transformierten Beobachtungen   ist, betont die zweite Summendarstellung die funktionale Abhängigkeit von   und stellt die Funktion   als arithmetisches Mittel von   empirischen Verteilungsfunktionen dar, da   für   die empirische Verteilungsfunktion eines einzelnen beobachteten Wertes   ist.
  • In bestimmten Anwendungsbereichen, z. B. in Physik und Informatik, erfolgt eine symbolische Darstellung und Interpretation von   als Integral. Dazu wird die Dirac-Delta-Distribution   verwendet, die eine verallgemeinerte Funktion im Sinn der Distributionentheorie ist und die Eigenschaft
 
besitzt. Es gilt dann
 

Definition für klassierte Daten

Bearbeiten
 
Empirische Verteilungsfunktion für klassierte Daten

Manchmal liegen Daten nur klassiert vor, d. h. es sind   Klassen mit Klassenuntergrenzen  , Klassenobergrenzen   und relativen Klassenhäufigkeiten   gegeben,  .

Dann wird die Verteilungsfunktion definiert als

 

An den Klassenober- und -untergrenzen stimmt die Definition mit der Definition für unklassierte Daten überein, in den Bereichen dazwischen jedoch findet nun eine lineare Interpolation statt (siehe auch Summenhäufigkeitspolygon), bei der man unterstellt, dass die Beobachtungen innerhalb der Klassen gleichmäßig verteilt sind. Empirische Verteilungsfunktionen klassierter Daten sind damit (ebenso wie Verteilungsfunktionen stetiger Wahrscheinlichkeitsverteilungen, z. B. der Normalverteilung) zwar stetig, doch nur zwischen den Klassengrenzen differenzierbar, wobei ihr Anstieg der Höhe der jeweiligen Säule des zugrundeliegenden Histogramms entspricht.

Zu beachten ist dabei allerdings, dass die Intervallgrenzen klassierter Daten nach Möglichkeit so gewählt werden, dass die beobachteten Merkmalsausprägungen zwischen und nicht (wie im Fall unklassierter Daten) auf den Intervallgrenzen liegen, wodurch je nach Wahl der Klassengrenzen für ein und denselben Datenbestand ggf. leicht verschiedene Summenhäufigkeitspolygone entstehen können.

Beispiele

Bearbeiten

Allgemeiner Fall: Unklassierte Daten

Bearbeiten

Als Beispiel sollen die Pferdetrittdaten von Ladislaus von Bortkewitsch dienen. Im Zeitraum von 1875 bis 1894 starben in 14 Kavallerieregimentern der preußischen Armee insgesamt 196 Soldaten an Pferdetritten:

 
Empirische Verteilungsfunktion der unklassierten Pferdetritt-Daten
Jahr 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94  
Tote 3 5 7 9 10 18 6 14 11 9 5 11 15 6 11 17 12 15 8 4 196

Schreibt man die Tabelle mit den Merkmalsausprägungen und relativen Häufigkeiten auf, dann ergibt sich

  3 4 5 6 7 8 9 10 11 12 14 15 17 18
Jahre 1 1 2 2 1 1 2 1 3 1 1 2 1 1
  0,05 0,05 0,10 0,10 0,05 0,05 0,10 0,05 0,15 0,05 0,05 0,10 0,05 0,05
  0,05 0,10 0,20 0,30 0,35 0,40 0,50 0,55 0,70 0,75 0,80 0,90 0,95 1,00

Die letzte Zeile enthält den Wert der Verteilungsfunktion an der entsprechenden Stelle  . Beispielsweise an der Stelle   ergibt sich  .

Klassierte Daten

Bearbeiten

Klassiert man die Daten, so erhält man folgende Datentabelle. Die Grafik dazu findet man bei der Definition.

ab   2 4 6 8 10 12 14 16
bis   4 6 8 10 12 14 16 18
  0,10 0,20 0,10 0,15 0,20 0,05 0,10 0,10
  0,10 0,30 0,40 0,55 0,75 0,80 0,90 1,00

Die letzte Zeile enthält den Wert der Verteilungsfunktion an der entsprechenden Stelle  . An der Stelle   ergibt sich  .

Empirische Verteilungsfunktion als zufällige Funktion

Bearbeiten

Wenn die beobachteten Werte   als realisierte Werte von Zufallsvariablen   mit gemeinsamer  -dimensionaler Wahrscheinlichkeitsverteilung aufgefasst werden, so ist die aus den beobachteten Werten gebildete empirische Verteilungsfunktion

 

eine realisierte Funktion der zufälligen empirischen Verteilungsfunktion

 

Damit definiert die Abbildung   einen stochastischen Prozess, der auch durch die indizierte Familie von Zufallsvariablen   charakterisiert werden kann. Realisierungen (Pfade) dieses Prozesses sind nichtstochastische Verteilungsfunktionen  .

Schätzung

Bearbeiten

Im inferenztheoretischen Zusammenhang werden die beobachteten Werte   als realisierte Werte von stochastisch unabhängigen und identisch verteilten Zufallsvariablen   aufgefasst, die jeweils dieselbe unbekannte Verteilungsfunktion   haben. Die aus den beobachteten Werten gebildete empirische Verteilungsfunktion   ist dann eine konkrete Schätzung für   und die zufälligen empirische Verteilungsfunktion   ist ein Schätzer für die Verteilungsfunktion  .

Endliche und asymptotische Eigenschaften der Verteilung von   werden in der Theorie der empirischen Prozesse untersucht.[2][3] Dabei ist

 

das Standardbeispiel eines empirischen Prozesses, dessen asymptotische Verteilung (für  ) unter bestimmten Voraussetzungen durch eine Brownsche Brücke charakterisiert werden kann.

Eigenschaften für endlichen Stichprobenumfang

Bearbeiten

Für stochastisch unabhängige und identisch verteilte Zufallsvariablen  , die jeweils dieselbe Verteilungsfunktion   haben, gelten folgende Aussagen für endlichen fixierten Stichprobenumfang  :

  • Für jede Stelle   ist   eine Bernoulli-verteilte Zufallsvariable mit dem Bernoulli-Parameter  .
  • Für jede Stelle   ist   eine binomialverteilte Zufallsvariable. Es gilt:
 
  • Für jede Stelle   gilt:
 
  ist also eine erwartungstreue Schätzfunktion für  .
  • Für jede Stelle   gilt:
 
  • Für jede Stelle   und die Zufallsvariable
 
gilt:
 
  • Die Verteilung der reellwertigen Zufallsvariablen
 
welche die (zufällige) maximale Abweichung der zufälligen empirischen Verteilungsfunktion   von der Verteilungsfunktion   angibt, hängt für eine stetige Verteilungsfunktion   nicht von   ab. Die Stichprobenfunktion   ist also bezüglich der Klasse aller stetigen Verteilungsfunktionen eine verteilungsfreie Statistik, die Grundlage des Kolmogorow-Smirnow-Anpassungstests ist.

Konvergenzeigenschaften

Bearbeiten

Für stochastisch unabhängige und identisch verteilte Zufallsvariablen  , die jeweils dieselbe Verteilungsfunktion   haben, gelten folgende Konvergenzaussagen für  :

  • Das starke Gesetz der großen Zahlen sichert zu, dass für jeden Wert   die Zufallsvariable   fast sicher gegen die Verteilungsfunktion   an der Stelle   konvergiert:
 
Damit ist   ein stark konsistenter Schätzer für  . Die zufällige empirische Verteilungsfunktion   konvergiert also punktweise fast sicher gegen die Verteilungsfunktion  .
  • Für alle   gilt:
 
Dabei bezeichnet   die Konvergenz in Verteilung und   bezeichnet eine Normalverteilung mit den beiden Parametern   und  , die für eine normalverteilte Zufallsvariable deren Erwartungswert und Varianz angeben. Üblich ist auch die Darstellung
 
mit Konvergenz in Verteilung gegen eine Standardnormalverteilung.
 
Diese Eigenschaft ist die mathematische Begründung dafür, dass es sinnvoll ist, Daten mit einer empirischen Verteilungsfunktion zu beschreiben, und dass Stichprobenziehen mit Zurücklegen insofern grundsätzlich funktioniert, dass die empirische Verteilungsfunktion bei über alle Grenzen wachsendem Stichprobenumfang der empirischen Verteilungsfunktion beliebig nahe kommt.
 
mit einer unspezifierten Konstante   und macht eine Aussage darüber, mit welcher Geschwindigkeit die Konvergenz von   gegen Null stattfindet. Diese Konstante wurde später durch Massard als bestmögliche Konstante   näher spezifiziert.[5]

Anmerkung zur Notation

Bearbeiten
  • In theoretischen Arbeiten wird häufig die zufällige empirische Verteilungsfunktion mit   bezeichnet.
  • In eher wahrscheinlichkeitstheoretisch als statistisch orientierten Darstellungen wird die Bernoulli-verteilte Zufallsvariable   in der Form   notiert, wobei   eine abkürzende Notation für das Ereignis   ist und   als Funktion auf einem abstrakten Wahrscheinlichkeitsraum   aufgefasst wird.

Empirische Verteilung

Bearbeiten

Empirische Verteilung für gegebene beobachtete Werte

Bearbeiten

Die empirische Verteilungsfunktion ist die Verteilungsfunktion der empirischen Verteilung  , die durch

 

definiert ist und von den beobachteten Werten   abhängt.

Wenn die   beobachteten Werte paarweise voneinander verschieden sind, dann ist die empirische Verteilung eine diskrete Verteilung, die jedem Beobachtungspunkt den Wert   zuordnet, d. h.   für  . Falls bestimmte Werte mehrfach auftreten, ordnet die empirische Verteilung der entsprechenden Stelle die relative Häufigkeit zu. Diese relativen Häufigkieten addieren sich zu Eins. Umgekehrt lässt sich zu jeder empirischen Verteilung   die empirische Verteilungsfunktion

 

definieren. Die empirische Verteilung besitzt formal die Eigenschaften einer Wahrscheinlichkeitsverteilung, kann aber in der deskriptiven Statistik als relative Häufigkeitsverteilung aufgefasst werden, ohne dass eine stochastische Interpretation intendiert ist.

Zufällige empirische Verteilung

Bearbeiten

Eine zufällige empirische Verteilungsfunktion charakterisiert eine zufällige empirische Verteilung  , die durch

 

definiert werden kann und von den Zufallsvariablen   abhängt.

Zu einer gegebenen zufälligen empirischen Verteilung   ergibt sich die zufällige empirische Verteilungsfunktion als

 
 
Ogive (Verteilungsfunktion) einer theoretischen und einer empirischen Verteilung

Ogive bezeichnete ursprünglich das gotische Bau-Stilelement Spitzbogen sowie die verstärkten Rippen in den Gewölben. Der Ausdruck wurde in der Statistik für eine Verteilungsfunktion erstmals 1875 von Francis Galton verwendet:

„When the objects are marshalled in the order of their magnitude along a level base at equal distances apart, a line drawn freely through the tops of the ordinates..will form a curve of double curvature... Such a curve is called, in the phraseology of architects, an ‘ogive’.“

Francis Galton: Aus Statistics by intercomparison with remarks on the Law of Frequency of Error., Philosophical Magazine 49, S. 35

Auf der horizontalen Achse des Koordinatensystems werden hier die geordneten (oft gruppierten) Merkmalsausprägungen aufgetragen; auf der vertikalen Achse die relativen kumulierten Häufigkeiten in Prozent.

Die Grafik rechts zeigt die kumulierte Verteilungsfunktion einer theoretischen Standardnormalverteilung. Wird der rechte Teil der Kurve an der Stelle   gespiegelt (rot gestrichelt), dann sieht die entstehenden Figur wie eine Ogive aus.

Darunter wird eine empirische Verteilungsfunktion gezeigt. Für die Grafik wurden 50 Zufallszahlen aus einer Standardnormalverteilung gezogen. Je mehr Zufallszahlen man zieht, desto stärker nähert man sich der theoretischen Verteilungsfunktion an.

Literatur

Bearbeiten
  • Horst Mayer: Beschreibende Statistik. München – Wien 1995.
  • P. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, Empirische Verteilungsfunktion (empirical distribution function), S. 84–85.

Einzelnachweise

Bearbeiten
  1. Wolfgang Polasek: Schließende Statistik – Einführung in die Schätz- und Testtheorie für Wirtschaftswissenschaftler (= Springer-Lehrbuch). 2. Auflage. Springer, Berlin / Heidelberg 1997, ISBN 978-3-540-61731-0, S. 7, doi:10.1007/978-3-642-59099-3.
  2. Galen R. Shorack, Jon A. Wellner: Empirical Processes with Applications in Statistics. Wiley, New York 1986 (Unveränderter Nachdruck: SIAM, Philadelphia 2009, ISBN 978-0-89871-684-9).
  3. Aad W. van der Vaart, Jon A. Wellner: Weak Convergence and Empirical Processes – With Applications to Statistics (= Springer Series in Statistics). 2. Auflage. Springer, Cham 2023, ISBN 978-3-03129038-1, doi:10.1007/978-3-031-29040-4.
  4. P. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, S. 85.
  5. P. Massart: The tight constant in the Dvoretzky–Kiefer–Wolfowitz inequality. In: The Annals of Probability. Band 18, Nr. 3, 1990, S. 1269–1283, doi:10.1214/aop/1176990746.