Anmerkung: Eine über definierte lineare algebraische Gruppe ist – per Definition – eine durch Polynome mit rationalen Koeffizienten definierte Untergruppe . Wenn eine über definierte lineare algebraische Gruppe ist, dann ist nach dem Satz von Borel und Harish-Chandra ein Gitter in . Folglich ist jede arithmetische Gruppe ein Gitter in der Zusammenhangskomponente der umgebenden Lie-Gruppe.
Nach Definition ist klar, dass und auch zu kommensurable Gruppen arithmetisch sind.
Bezeichne die Gruppe der ganzen Gaußschen Zahlen. ist eine arithmetische Untergruppe von , denn es ist für die kanonische Einbettung .
Sei , wobei die Diagonalmatrix bezeichnet und sei . Dann ist eine arithmetische Untergruppe von , denn ist durch Polynome mit rationalen Koeffizienten definiert.
Im Folgenden wollen wir die Definition auf eine Klasse von weniger offensichtlichen Beispielen anwenden, nämlich auf die Hilbertschen Modulgruppen.
Sei
ein reeller quadratischer Zahlkörper – für eine quadratfreie ganze Zahl mit – und sein Ganzheitsring. Es gibt zwei durch definierte Einbettungen und dementsprechend zwei Einbettungen .
Wir betrachten die halbeinfache Lie-Gruppe
und die Untergruppe
und wollen zeigen, dass eine arithmetische Gruppe ist.
Alle arithmetischen Untergruppen von kann man mittels Divisionsalgebren, mittels unitärer Gruppen oder mittels einer Kombination dieser beiden Methoden konstruieren.
Sei mit und sei das nichttriviale Element. Sei eine Divisionsalgebra über , so dass zu einem Antiautomorphismus von fortgesetzt werden kann. Sei eine hermitesche Matrix, d. h. .
Sei eine algebraische Gruppe. Ein Torus ist eine abgeschlossene, zusammenhängende Untergruppe , die (über ) diagonalisierbar ist, das heißt, es gibt einen Basiswechsel , so dass aus diagonalisierbaren Matrizen besteht.
Der Torus heißt -spaltend, wenn man wählen kann. Zum Beispiel ist kein -spaltender Torus in , die Gruppe der Diagonalmatrizen (mit Determinante 1) aber doch. Der -Rang einer algebraischen Gruppe ist die maximale Dimension eines -spaltenden Torus. Zum Beispiel ist oder .
Ein Torus heißt -spaltend, wenn er über definiert ist und man wählen kann.
Für eine arithmetische Gruppe gibt es per Definition eine über definierte zusammenhängende lineare algebraische Gruppe und einen Isomorphismus , so dass (modulo kompakter Gruppen) das Bild von zu isomorph ist. Der -Rang von wird definiert als die Dimension eines maximalen -spaltenden Torus in . (Man beachte, dass nur von abhängt, dass aber verschiedene arithmetische Untergruppen einer Lie-Gruppe unterschiedlichen -Rang haben können, weil die zu wählenden algebraischen Gruppen sich unterscheiden.)
Man sieht leicht, dass . Die arithmetische Untergruppe hat also -Rang . Der -Rang der oben besprochenen Hilbertschen Modulgruppe ist hingegen der -Rang der oben konstruierten Gruppe . Man kann zeigen, dass ein maximaler -spaltender Torus in ist, mithin .
Der Quotient ist ein lokal symmetrischer Raum. Der -Rang von lässt sich interpretieren als die maximale Dimension eines flachen Unterraumes in einer endlichen Überlagerung von oder als die kleinste Zahl , so dass ganz in endlichem Abstand von einer endlichen Vereinigung -dimensionaler flacher Unterräume ist. Insbesondere ist , falls kompakt ist.
Satz: Sei eine halbeinfache Lie-Gruppe ohne kompakten Faktor mit . Dann ist jedes irreduzible Gitter arithmetisch.
Erläuterungen: Ein Gitter ist eine diskrete Untergruppe mit , wobei das Volumen bzgl. des Haarmaßes berechnet wird. Ein Gitter heißt irreduzibel, falls es keine Zerlegung mit Gittern gibt.
Margulis bewies diesen Satz als eine Folgerung aus dem von ihm bewiesenen Superstarrheitssatz.[1]
Lizhen Ji: Arithmetic groups and their generalizations. What, why, and how (= Studies in Advanced Mathematics. Bd. 43). American Mathematical Society, Providence RI 2008, ISBN 978-0-8218-4675-9.
↑Margulis, G.A.: Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than 1. Invent. Math (1984) 76 - 93. doi:10.1007/BF01388494