Hypergeometrische Verteilung

diskrete Wahrscheinlichkeitsverteilung
(Weitergeleitet von Ziehen ohne Zurücklegen)

Die hypergeometrische Verteilung ist eine Wahrscheinlichkeitsverteilung in der Stochastik. Sie ist univariat und zählt zu den diskreten Wahrscheinlichkeitsverteilungen. In Abgrenzung zur allgemeinen hypergeometrischen Verteilung wird sie auch klassische hypergeometrische Verteilung genannt.[1]

Wahrscheinlichkeitsfunktion der hypergeometrischen Verteilung für .Rot: ;Blau: ; Grün: .

Einer dichotomen Grundgesamtheit werden in einer Stichprobe zufällig Elemente ohne Zurücklegen entnommen. Die hypergeometrische Verteilung gibt dann Auskunft darüber, mit welcher Wahrscheinlichkeit in der Stichprobe eine bestimmte Anzahl von Elementen vorkommt, die die gewünschte Eigenschaft haben. Bedeutung kommt dieser Verteilung daher etwa bei Qualitätskontrollen zu.

Die hypergeometrische Verteilung wird modellhaft dem Urnenmodell ohne Zurücklegen zugeordnet (siehe auch Kombination ohne Wiederholung). Man betrachtet speziell in diesem Zusammenhang eine Urne mit zwei Sorten Kugeln. Es werden Kugeln ohne Zurücklegen entnommen. Die Zufallsvariable ist die Zahl der Kugeln der ersten Sorte in dieser Stichprobe.

Die hypergeometrische Verteilung beschreibt also die Wahrscheinlichkeit dafür, dass bei gegebenen Elementen („Grundgesamtheit des Umfangs “), von denen die gewünschte Eigenschaft besitzen, beim Herausgreifen von Probestücken („Stichprobe des Umfangs “) genau Treffer erzielt werden, d. h. die Wahrscheinlichkeit für Erfolge in Versuchen.

Beispiel 1: In einer Urne befinden sich Kugeln, davon sind blau, also sind nicht blau. Wie hoch ist die Wahrscheinlichkeit , bei einer Stichprobe von zwanzig Kugeln genau dreizehn blaue Kugeln zu ziehen (ohne Zurücklegen)? Antwort: . Dies entspricht dem blauen Balken bei im Diagramm "Wahrscheinlichkeitsfunktion der hypergeometrischen Verteilung für ".

Beispiel 2: In einer Urne befinden sich Kugeln, davon sind gelb. Wie hoch ist die Wahrscheinlichkeit , bei einer Stichprobe von zehn Kugeln genau vier gelbe Kugeln zu ziehen? Antwort: . Das Beispiel wird unten durchgerechnet.

Definition

Bearbeiten

Die hypergeometrische Verteilung ist abhängig von drei Parametern:

  • der Anzahl   der Elemente einer Grundgesamtheit.
  • der Anzahl   der Elemente mit einer bestimmten Eigenschaft in dieser Grundmenge (die Anzahl möglicher Erfolge).
  • der Anzahl   der Elemente in einer Stichprobe.

Die Verteilung gibt nun Auskunft darüber, wie wahrscheinlich es ist, dass sich   Elemente mit der zu prüfenden Eigenschaft (Erfolge bzw. Treffer) in der Stichprobe befinden. Der Ergebnisraum   ist daher  .

Eine diskrete Zufallsgröße   unterliegt der hypergeometrischen Verteilung mit den Parametern  ,   und  , wenn sie die Wahrscheinlichkeiten

 

für   besitzt. Dabei bezeichnet   den Binomialkoeffizienten  über  “. Man schreibt dann   oder  .

Die Verteilungsfunktion   gibt dann die Wahrscheinlichkeit an, dass höchstens   Elemente mit der zu prüfenden Eigenschaft in der Stichprobe sind. Diese kumulierte Wahrscheinlichkeit ist die Summe

 .

Alternative Parametrisierung

Bearbeiten

Gelegentlich wird auch als Wahrscheinlichkeitsfunktion

 

verwendet. Diese geht mit   und   in die obige Variante über.

Eigenschaften der hypergeometrischen Verteilung

Bearbeiten

Symmetrien

Bearbeiten

Es gelten folgende Symmetrien:

  • Vertauschung von gezogenen Kugeln und Erfolgen:  
  • Vertauschung von Erfolgen und Misserfolgen:  

Erwartungswert

Bearbeiten

Der Erwartungswert der hypergeometrisch verteilten Zufallsvariable   ist

 .

Der Modus der hypergeometrischen Verteilung ist

 .

Dabei ist   die Gaußklammer.

Die Varianz der hypergeometrisch verteilten Zufallsvariable   ist

 ,

wobei der letzte Bruch der so genannte Korrekturfaktor (Endlichkeitskorrektur) beim Modell ohne Zurücklegen ist.

Die Schiefe der hypergeometrischen Verteilung ist

 .

Charakteristische Funktion

Bearbeiten

Die charakteristische Funktion hat die folgende Form:

 

Wobei   die gaußsche hypergeometrische Funktion bezeichnet.

Momenterzeugende Funktion

Bearbeiten

Auch die momenterzeugende Funktion lässt sich mittels der hypergeometrischen Funktion ausdrücken:

 

Wahrscheinlichkeitserzeugende Funktion

Bearbeiten

Die wahrscheinlichkeitserzeugende Funktion ist gegeben als

 

Beziehung zu anderen Verteilungen

Bearbeiten

Beziehung zur Binomialverteilung

Bearbeiten

Im Gegensatz zur Binomialverteilung werden bei der hypergeometrischen Verteilung die Stichproben nicht wieder in das Reservoir zur erneuten Auswahl zurückgelegt. Ist der Umfang   der Stichprobe im Vergleich zum Umfang   der Grundgesamtheit relativ klein (etwa  ), unterscheiden sich die durch die Binomialverteilung bzw. die hypergeometrische Verteilung berechneten Wahrscheinlichkeiten nicht wesentlich voneinander. In diesen Fällen wird dann oft die Approximation durch die mathematisch einfacher zu handhabende Binomialverteilung vorgenommen.

Beziehung zur Pólya-Verteilung

Bearbeiten

Die hypergeometrische Verteilung ist ein Spezialfall der Pólya-Verteilung (wähle  ).

Beziehung zum Urnenmodell

Bearbeiten

Die hypergeometrische Verteilung entsteht aus der diskreten Gleichverteilung durch das Urnenmodell. Aus einer Urne mit insgesamt   Kugeln sind   eingefärbt und es werden   Kugeln gezogen. Die hypergeometrische Verteilung gibt für   die Wahrscheinlichkeit an, dass   gefärbte Kugeln gezogen werden. Andernfalls kann auch mit der Binomialverteilung in der Praxis modelliert werden. Siehe hierzu auch das Beispiel.

Beziehung zur multivariaten hypergeometrischen Verteilung

Bearbeiten

Die multivariate hypergeometrische Verteilung ist eine Verallgemeinerung der hypergeometrischen Verteilung. Sie beantwortet die Frage nach der Anzahl der gezogenen Kugeln einer Farbe aus einer Urne, wenn diese mehr als zwei unterscheidbare Farben von Kugeln enthält. Für zwei Farben stimmt sie mit der hypergeometrischen Verteilung überein.

Beispiele

Bearbeiten

Ein Beispiel für die praktische Anwendung der hypergeometrischen Verteilung ist das Lotto: Beim Zahlenlotto gibt es 49 nummerierte Kugeln; davon werden bei der Auslosung 6 gezogen. Auf dem Lottoschein werden 6 Zahlen angekreuzt.

  gibt die Wahrscheinlichkeit dafür an, genau   Richtige zu erzielen.

Texas Hold’em

Bearbeiten

Bei der Pokervariante Texas Hold’em werden von den 52 Spielkarten fünf Community Cards aufgedeckt. Wenn die diskrete Zufallsvariable   die Anzahl der Asse zählt, die aufgedeckt werden, ergibt sich für   die hypergeometrische Verteilung   mit   Spielkarten,   Assen und   Community Cards.

Gesucht ist die Wahrscheinlichkeit, dass von den fünf Community Cards genau zwei Asse sind.

Gesamtanzahl der Spielkarten  
Anzahl der Asse  
Umfang der Stichprobe  
Anzahl der Treffer (Asse)  

Also  .

Diese Wahrscheinlichkeit ergibt sich aus:

Anzahl der Möglichkeiten, genau zwei Asse auszuwählen
geteilt durch
Anzahl der Möglichkeiten, genau fünf von 52 Spielkarten auszuwählen

Es gibt

 

Möglichkeiten, genau zwei der vier Asse auszuwählen.

Es gibt

 

Möglichkeiten, genau drei der 48 anderen Spielkarten auszuwählen.

Da jedes Ass mit jeder anderen Spielkarte kombiniert werden kann, ergeben sich

 

Möglichkeiten für genau zwei Asse und drei andere Spielkarten.

Es gibt insgesamt

 

Möglichkeiten, fünf von 52 Spielkarten aufzudecken.

Wir erhalten also die Wahrscheinlichkeit

 ,

das heißt, in etwa vier Prozent der Fälle werden genau zwei Asse aufgedeckt.

Die Werte und die Wahrscheinlichkeiten für die hypergeometrische Verteilung   lassen sich in folgender Tabelle zusammenfassen:

           
           

Der Erwartungswert beträgt

 .

Die Varianz ist demnach gegeben durch

 

Für die Standardabweichung ergibt sich damit:

 .

Ausführliches Rechenbeispiel mit Kugeln

Bearbeiten

In einem Behälter befinden sich 45 Kugeln, von denen 20 gelb sind. Es werden zehn Kugeln ohne Zurücklegen entnommen.

Die hypergeometrische Verteilung gibt die Wahrscheinlichkeit dafür an, dass genau x = 0, 1, 2, 3, …, 10 der entnommenen Kugeln gelb sind.

 

Zu dem oben aufgeführten Beispiel der farbigen Kugeln soll die Wahrscheinlichkeit ermittelt werden, dass genau 4 gelbe Kugeln resultieren.

Gesamtanzahl der Kugeln  
Anzahl mit der Eigenschaft gelb  
Umfang der Stichprobe  
Anzahl der Treffer (gelb)  

Also  .

Die Wahrscheinlichkeit ergibt sich aus:

Anzahl der Möglichkeiten, genau 4 gelbe (und damit genau 6 violette) Kugeln auszuwählen
geteilt durch
Anzahl der Möglichkeiten, genau 10 von 45 Kugeln beliebiger Farbe auszuwählen

Es gibt

 

Möglichkeiten, genau 4 gelbe Kugeln auszuwählen.

Es gibt

 

Möglichkeiten, genau 6 violette Kugeln auszuwählen.

Da jede gelbe Kugel mit jeder violetten Kugel kombiniert werden kann, ergeben sich

 

Möglichkeiten für genau 4 gelbe und 6 violette Kugeln.

Es gibt insgesamt

 

Möglichkeiten, 10 Kugeln zu ziehen.

Wir erhalten also die Wahrscheinlichkeit

 ,

das heißt, in rund 27 Prozent der Fälle werden genau 4 gelbe (und 6 violette) Kugeln entnommen.

Alternativ kann das Ergebnis auch mit folgender Gleichung gefunden werden

 

Es befinden sich in der Stichprobe von 10 Kugeln nämlich 4 gelbe Kugeln. Die restlichen 16 gelben Kugeln befinden sich unter den 35 übriggebliebenen Kugeln, die nicht zur Stichprobe gehören.

Zahlenwerte zu den Beispielen

Bearbeiten
h(x|45;20;10)
x Anzahl möglicher
Ergebnisse
Wahrscheinlichkeit
in %
0 3.268.760 0,1024
1 40.859.500 1,2807
2 205.499.250 6,4416
3 547.998.000 17,1776
4 858.049.500 26,8965
5 823.727.520 25,8207
6 490.314.000 15,3694
7 178.296.000 5,5889
8 37.791.000 1,1846
9 4.199.000 0,1316
10 184.756 0,0058
3.190.187.286 100,0000
Erwartungswert 4,4444
Varianz 1,9641
h(x|45;10;20)
x Anzahl möglicher
Ergebnisse
Wahrscheinlichkeit
in %
0 3.247.943.160 0,1024
1 40.599.289.500 1,2808
2 204.190.544.250 6,4416
3 544.508.118.000 17,1776
4 852.585.079.500 26,8965
5 818.481.676.320 25,8207
6 487.191.474.000 15,3694
7 177.160.536.000 5,5889
8 37.550.331.000 1,1846
9 4.172.259.000 0,1316
10 183.579.396 0,0058
11 … 20 0 0
3.169.870.830.126 100,0000
Erwartungswert 4,4444
Varianz 1,9641
h(x|49;6;6)
x Anzahl möglicher
Ergebnisse
Wahrscheinlichkeit
in %
0 6.096.454 43,5965
1 5.775.588 41,3019
2 1.851.150 13,2378
3 246.820 1,765
4 13.545 0,0969
5 258 0,0018
6 1 0,0000072
13.983.816 100,0000
Erwartungswert 0,7347
Varianz 0,5776
Bearbeiten
Wikibooks: Hypergeometrische Verteilung – Lern- und Lehrmaterialien

Einzelnachweise

Bearbeiten
  1. Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 36, doi:10.1515/9783110215274.