Liste der Oxidationsstufen der chemischen Elemente
Wikimedia-Liste
Die hier dargestellte Liste ist eine Ausgliederung aus dem Hauptartikel: Oxidationszahl. Sie führt alle bekannten chemischen Elemente mit den ihnen zugeordneten Oxidationszahlen auf. Auf die Auflistung gebrochen-zahliger Oxidationszahlen wird aus Platzgründen verzichtet. Diese werden jedoch bei den einzelnen Elementen, bei denen sie auftreten, aufgeführt.
Ein fettgeschriebener Eintrag bedeutet, dass das betreffende Element häufig diese Oxidationszahl(en) aufweist. Hinweis: Die Liste ist durch einen Klick auf das entsprechende Symbol spaltenweise sortierbar.
Liste
BearbeitenOrdnungs- zahl |
Element | Element- symbol |
IUPAC-Gruppe (CAS-Gruppe) |
Oxidationszahl(en) | Beispiele für Verbindungen |
---|---|---|---|---|---|
1 | Wasserstoff (Hydrogenium) | H | 1 ( I-A) | −1, 1 | −1 in NaH, 1 in HCl |
2 | Helium | He | 18 ( VIII-A) | 0 | 0 in HeNa2[1] |
3 | Lithium | Li | 1 ( I-A) | 1 | 1 in LiF |
4 | Beryllium | Be | 2 ( II-A) | 2 | 2 in BeO |
5 | Bor | B | 13 ( III-A) | 3 | 3 in H3BO3 |
6 | Kohlenstoff (Carboneum) | C | 14 ( IV-A) | −4, −3, −2, −1, 0, 1, 2, 3, 4 | −4 in CH4, −3 in C2H6, −2 in C2H4, −1 in C2H2, 0 in HCHO, 1 in CH3CHO **, 2 in CO, 3 in CH3COOH **, 4 in CO2 |
7 | Stickstoff (Nitrogenium) | N | 15 ( V-A) | −3, −2, −1, 0, 1, 2, 3, 4, 5 | −3 in NH3, −2 in N2H4, −1 in N2H2, 0 in N(NO2)3 (zentrales N-Atom), 1 in H2N2O2, 2 in NO, 3 in HNO2, 4 in NO2, 5 in HNO3 |
8 | Sauerstoff (Oxygenium) | O | 16 ( VI-A) | −2, −1, +1, +2 | −2 in Oxiden, −1 in Peroxiden, 1 in O2F2, 2 in OF2 |
9 | Fluor | F | 17 ( VII-A) | −1 | −1 in HF |
10 | Neon | Ne | 18 ( VIII-A) | 0 | 0 in NeBeS[2] |
11 | Natrium | Na | 1 ( I-A) | −1, 1 | −1 in {Na[crypt]}+Na-, 1 in NaOH |
12 | Magnesium | Mg | 2 ( II-A) | 2 | 2 in MgO |
13 | Aluminium | Al | 13 ( III-A) | −2, −1, 1, 2, 3 | −2, −1 in Aluminium-Zintl-Phasen (z. B. Sr8Al7[3], LiAl[4]), 1 in AlF, 2 in [(SiMe3)3C]4Al2[5], 3 in Al2O3 |
14 | Silicium | Si | 14 ( IV-A) | −4, −2, −1, 2, 4 | −4 in Ca2Si, −2 in CaSi, −1 in CaSi2, 2 in SiO, 4 in SiO2 |
15 | Phosphor | P | 15 ( V-A) | −3, −2, −1, 0, 1, 2, 3, 4, 5 | −3 in Na3P, −2 in Na2P, −1 in helicalem (P−)n, 0 in P7H3 (apicales P-Atom), 1 in H3PO2, 2 in P2F4, 3 in P4O6, 4 in H4P2O6, 5 in P4O10 |
16 | Schwefel (Sulfur) | S | 16 ( VI-A) | −2, −1, 0, 1, 2, 3, 4, 5, 6 | −2 in H2S, −1 in H2S2, 0 in S4O62− (mittlere S-Atome), 1 in S2Cl2, 2 in SCl2, 3 in Na2S2O4, 4 in SO2, 5 in S2O62−, 6 in H2SO4 |
17 | Chlor | Cl | 17 ( VII-A) | −1, 1, 3, 4, 5, 7 | −1 in Cl−, 1 in ClO−, 3 in ClO2−, 4 in ClO2, 5 in ClO3−, 7 in ClO4− |
18 | Argon | Ar | 18 ( VIII-A) | (2) | 2 in HArF[6] (instabil) |
19 | Kalium | K | 1 ( I-A) | −1, 1 | −1 in Kalid, 1 in KOH |
20 | Calcium | Ca | 2 ( II-A) | 2 | 2 in CaO |
21 | Scandium | Sc | 3 ( III-B) | 3 | 3 in Sc2O3 |
22 | Titan | Ti | 4 ( IV-B) | −2, −1, 0, 1, 2, 3, 4 | −2 in [Ti(CO)6]2−[7], −1 in [Ti(η6-C6H5R)2]– (R=H, Me)[8], 0 in [Ti(η6-C6H6)2][9], 1 in TiH[10], 2 in TiCl2, 3 in TiCl3, 4 in TiO2 |
23 | Vanadium | V | 5 ( V-B) | −3, −2, −1, 0, 1, 2, 3, 4, 5 | -3 in [V(CO)5]3−, -2 in [HV(CO)5]3-[11], -1 in [V(CO)6]−, 0 in V(CO)6, 1 in ?, 2 in VI2, 3 in VBr3, 4 in VCl4, 5 in VF5 |
24 | Chrom | Cr | 6 ( VI-B) | 0, 2, 3, 4, 5, 6 | 0 in Cr(CO)6, 2 in CrCl2, 3 in Cr2O3, 4 in CrO2, 5 in CrF5, 6 in CrO3 |
25 | Mangan | Mn | 7 ( VII-B) | −3, −1, 0, 1, 2, 3, 4, 6, 7 | −3 in Mn(NO)3CO, −1 in Na[Mn(CO)5], 0 in Mn2(CO)10, 1 in [(CH3C5H4)Mn(CO)3], 2 in MnCl2, 3 in Mn2O3, 4 in MnO2, 5 in K3MnO4, 6 in K2MnO4, 7 in KMnO4 |
26 | Eisen (Ferrum) | Fe | 8 ( VIII-B) | −2, −1, 0, 1, 2, 3, 4, 5, 6 | −2 in Na2[Fe(CO)4], −1 in [Fe2(CO)8]2−, 0 in Fe(CO)5, 1 in (η5-C5H5)2Fe2(CO)4, 2 in FeSO4, 3 in Fe2O3, 4 in Li2FeO3, 5 in FeO43−, 6 in BaFeO4 |
27 | Cobalt | Co | 9 ( VIII-B) | −1, 0, 2, 3, 4, 5 | −1 in [Co(CO)4]−, 0 in Co2(CO)8, 2 in CoCl2, 3 in CoF3, 4 in T4-[Co(nor)4], 5 in Na3CoO4 |
28 | Nickel | Ni | 10 ( VIII-B) | 0, 1, 2, 3, 4 | 0 in Ni(CO)4, 1 in K4[Ni2(CN)6], 2 in NiSO4, 3 in Ni2O3, 4 in K2[NiF6] |
29 | Kupfer (Cuprum) | Cu | 11 ( I-B) | 1, 2, 3, 4 | 1 in Cu2O, 2 in CuSO4, 3 in YBa2Cu3O7–x, 4 in [CuF6]2− |
30 | Zink | Zn | 12 ( II-B) | 1, 2 | 1 in Zn2(η5–C5Me5)2[12], 2 in ZnS |
31 | Gallium | Ga | 13 ( III-A) | 1, 2, 3 | 1 in "GaF"(=Ga, 2 in IGa IIII4)GaS, 3 in GaCl3 |
32 | Germanium | Ge | 14 ( IV-A) | −4, 2, 4 | −4 in Mg2Ge, 2 in GeI2, 4 in GeO2 |
33 | Arsen | As | 15 ( V-A) | −3, 0, 1, 2, 3, 4, 5 | −3 in Na3As, 0 in AsH3, 1 in AsI[13], 2 in As2I4[14], 3 in As2O3, 4 in As(OH)4[15], 5 in As2O5 |
34 | Selen | Se | 16 ( VI-A) | −2, −1, 1, 2, 4, 6 | −2 in CdSe, −1 in Diseleniden Se22−, 1 in Se2Cl2, 2 in SeCl2, 4 in SeO2, 6 in H2SeO4 |
35 | Brom | Br | 17 ( VII-A) | −1, 1, 3, 5, 7 | −1 in KBr, 1 im BrO−-Ion, 3 im BrO2−-Ion, 5 in HBrO3, 7 in HBrO4 |
36 | Krypton | Kr | 18 ( VIII-A) | 0, 2 | 0 in HKrCCH, 2 in KrF2 |
37 | Rubidium | Rb | 1 ( I-A) | −1, 1 | −1 in Rubidid, 1 in RbCl |
38 | Strontium | Sr | 2 ( II-A) | 2 | 2 in SrO |
39 | Yttrium | Y | 3 ( III-B) | 3 | 3 in Y2O3 |
40 | Zirconium | Zr | 4 ( IV-B) | 1, 2, 3, 4 | 1 in ZrCl, 2 in ZrCl2, 3 in ZrCl3, 4 in ZrO2 |
41 | Niob | Nb | 5 ( V-B) | 2, 3, 4, 5 | 2 in NbO, 3 in NbN, 4 in NbCl4, 5 in Nb2O5 |
42 | Molybdän | Mo | 6 ( VI-B) | −2, 0, 2, 3, 4, 5, 6 | −2 in [Mo(CO)5]2−, 0 in Mo(CO)6, 2 in [Mo6Cl8]Cl4, 3 in MoF3, 4 in MoS2, 5 in MoCl5, 6 in MoO3 |
43 | Technetium | Tc | 7 ( VII-B) | −1, 0, 1, 3, 4, 5, 6, 7 | −1 in [Tc(CO)5]–, 0 in Tc2(CO)10, 1 in [Tc(H2O)3(CO)3]+, 3 in [Tc2Cl8]2−, 4 in TcCl4, 5 in TcF5, 6 in TcF6, 7 in Tc2O7 |
44 | Ruthenium | Ru | 8 ( VIII-B) | −2, 0, 2, 3, 4, 5, 6, 7, 8 | 0 in Ru3(CO)12, 2 in Ru(C5H5)2, 3 in RuCl3, 4 in RuO2, 5 in RuF5, 6 in RuF6, 7 in [(C3H7)4N][RuO4], 8 in RuO4 |
45 | Rhodium | Rh | 9 ( VIII-B) | 0, 1, 2, 3, 4, 5, 6 | 0 in Rh4(CO)12, 1 in RhCl(PPh3)3, 2 in Rh2(OOCCH3)4, 3 in RhCl3, 4 in RhO2, 5 in RhF5, 6 in RhF6 |
46 | Palladium | Pd | 10 ( VIII-B) | 0, 1, 2, 4 | 0 in Pd(PPh3)4, 1 in Pd22+[16], 2 in PdS, 4 in PdO2 |
47 | Silber (Argentum) | Ag | 11 ( I-B) | 1, 2, 3, 4 | 1 in AgNO3, 2 in AgF2, 3 in Ag2O3, 4 in Cs2[AgF6] |
48 | Cadmium | Cd | 12 ( II-B) | 1, 2 | 1 in Cd2(AlCl4)2[17], 2 in CdO |
49 | Indium | In | 13 ( III-A) | 1, 2, 3 | 1 in InCl, 2 in In2Cl4 (mit In—In-Bindung), 3 in InCl3 |
50 | Zinn (Stannum) | Sn | 14 ( IV-A) | 2, 4 | –4 in Mg2Sn[18], 2 in SnS, 4 in SnO2 |
51 | Antimon | Sb | 15 ( V-A) | −3, −2, 1, 2, 3, 4, 5 | −3 in K3Sb, −2 im [Sb2]4−-Ion (z. B. in RbBa4[Sb2][Sb][O][19]), 1 in Organoantimon(I)-Verbindungen[20], 2 in Sb(PhCOS)3[21], 3 in SbF3, 4 im Antimon(IV)-chlorokomplex [SbCl6]2−[22], 5 in SbF5 |
52 | Tellur | Te | 16 ( VI-A) | −2, -1, 1, 2, 4, 6 | −2 in Na2Te, −1 in Ditelluriden Te22−, 1 in TeI, 2 in TeCl2, 4 in TeO2, 6 in H6TeO6 |
53 | Iod | I | 17 ( VII-A) | −1, 1, 3, 5, 7 | −1 in NaI, 1 in ICl, 3 in IF3, 5 in KIO3, 7 in H5IO6 |
54 | Xenon | Xe | 18 ( VIII-A) | 0, 2, 4, 6, 8 | 2 in XeF2, 4 in XeF4, 6 in XeF6, 8 in XeO4 |
55 | Caesium | Cs | 1 ( I-A) | −1, 1 | −1 in {Li[crypt]}+Cs−, 1 in CsCl |
56 | Barium | Ba | 2 ( II-A) | 2 | 2 in BaO |
57 | Lanthan | La | 3 ( III-B) | 3 | 3 in La2O3 |
58 | Cer | Ce | Lanthanoid | 3, 4 | 3 in CeF3, 4 in CeF4 |
59 | Praseodym | Pr | Lanthanoid | 3, 4 | 3 in PrF3, 4 in PrO2 |
60 | Neodym | Nd | Lanthanoid | 2, 3, 4 | 2 in NdBr2, 3 in NdCl3 |
61 | Promethium | Pm | Lanthanoid | 3 | 3 in Pm2O3 |
62 | Samarium | Sm | Lanthanoid | 2, 3 | 2 in SmI2, 3 in Sm2O3 |
63 | Europium | Eu | Lanthanoid | 2, 3 | 2 in EuCl2, 3 in EuCl3 |
64 | Gadolinium | Gd | Lanthanoid | 2, 3 | 2 in GdI2, 3 in Gd2O3 |
65 | Terbium | Tb | Lanthanoid | 1, 2, 3, 4 | 1 in TbCl[23], 2 in TbCl2, 3 in Tb2(SO4)3, 4 in TbF4 |
66 | Dysprosium | Dy | Lanthanoid | 2, 3, 4 | 2 in DyI2, 3 in Dy2O3 |
67 | Holmium | Ho | Lanthanoid | 2, 3 | 2 in Ho5Cl11, 3 in Ho2O3 |
68 | Erbium | Er | Lanthanoid | 3 | 3 in Er2O3 |
69 | Thulium | Tm | Lanthanoid | 2, 3, 4 | 2 in TmI2, 3 in TmI3, 4 in Cs3[TmF7][24] |
70 | Ytterbium | Yb | Lanthanoid | 2, 3 | 2 in YbI2, 3 in YbI3 |
71 | Lutetium | Lu | Lanthanoid | 3 | 3 in LuCl3 |
72 | Hafnium | Hf | 4 ( IV-B) | −2, 0, 1, 2, 3, 4 | 3 in HfI3, 4 in HfO2 |
73 | Tantal | Ta | 5 ( V-B) | 2, 3, 4, 5 | 2 in TaO, 3 in TaN, 4 in TaCl4, 5 in Ta2O5 |
74 | Wolfram | W | 6 ( VI-B) | 0, 2, 3, 4, 5, 6 | 0 in W(CO)6, 2 in [W6Cl8]Cl4, 3 in [W6Cl12]Cl6, 4 in WCl4, 5 in WCl5, 6 in WO3 |
75 | Rhenium | Re | 7 ( VII-B) | −1, 0, 1, 2, 3, 4, 6, 7 | −1 in Na[Re(CO)5][25], 0 in Re2(CO)10, 1 in ReBr(CO)5, 3 in Re3Cl9, 4 in ReO2, 5 in ReCl5, 6 in ReO3, 7 in Re2O7 |
76 | Osmium | Os | 8 ( VIII-B) | −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8 | −2 in Na2[Os(CO)4], −1 in Na2[Os4(CO)13], 0 in Os3(CO)12, 1 in OsI, 2 in OsCl2, 3 in OsCl3, 4 in OsO2, 5 in OsCl5, 6 in OsF6, 7 in OsOF5[26], 8 in OsO4 |
77 | Iridium | Ir | 9 ( VIII-B) | −3, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 | −3 in [Ir(CO)33−], −1 in [Ir(CO)3(PPh3)]−, 0 in Ir4(CO)12, 1 in IrCl(CO)(PPh3)2, 2 in IrCl2, 3 in IrCl3, 4 in IrO2, 5 in IrF5, 6 in IrF6, 7 in [(η2−O2)IrO2]+, 8 in IrO4, 9 in IrO4+[27] |
78 | Platin | Pt | 10 ( VIII-B) | −2, −1, 0, 2, 4, 5, 6 | −2 in Cs2Pt, −1 in BaPt2, 0 in Pt(PPh3)4, 1 in Pt22+[16], 2 in PtCl2, 4 in PtO2, 5 in PtF5, 6 in PtF6 |
79 | Gold (Aurum) | Au | 11 ( I-B) | −1, 1, 2, 3, 5 | −1 in CsAu, 1 in AuCl, 2 in AuSO4, 3 in AuCl3, 5 in AuF5 |
80 | Quecksilber (Hydrargyrum) | Hg | 12 ( II-B) | 0, 1, 2, 4(?) | 0 in Hg32+[28] (zentrales Hg-Atom), 1 in Hg2Cl2, 2 in HgCl2, 4 in HgF4[29] |
81 | Thallium | Tl | 13 ( III-A) | −1, 1, 3 | −1 in NaTl, 1 in Tl2SO4, 3 in Tl(NO3)3 |
82 | Blei (Plumbum) | Pb | 14 ( IV-A) | 2, 4 | 2 in PbO, 4 in PbO2 |
83 | Bismut | Bi | 15 ( V-A) | −3, 1, 3, 5 | −3 in Na3Bi[30], 1 in Bi10Hf3Cl18(=[Bi+][Bi95+][HfCl62−]3)[31], 3 in Bi2O3, 5 in NaBiO3 |
84 | Polonium | Po | 16 ( VI-A) | −2, 2, 4, 6 | −2 in Na2Po, 2 in H2Po, 2 in PoO, 4 in PoO2, 6 in PoO3 |
85 | Astat | At | 17 ( VII-A) | –1, 1, 3, 5, 7 | −1 in AgAt, 1 in AtCl, 3 in AtO2−, 5 in La(AtO3)3, 7 in AtO4− *** |
86 | Radon | Rn | 18 ( VIII-A) | 0, 2 | 2 in RnF2[32] |
87 | Francium | Fr | 1 ( I-A) | 1 | 1 in FrClO4 |
88 | Radium | Ra | 2 ( II-A) | 2 | 2 in RaSO4 |
89 | Actinium | Ac | 3 ( III-B) | 2, 3 | 2 in AcH2[33], 3 in AcF3 |
90 | Thorium | Th | Actinoid | 2, 3, 4 | 2 in ThI2, 3 in ThI3, 4 in ThI4 |
91 | Protactinium | Pa | Actinoid | 4, 5 | 4 in PaCl4, 5 in PaCl5 |
92 | Uran | U | Actinoid | 3, 4, 5, 6 | 3 in UCl3, 4 in UO2, 5 in UF5, 6 in UF6 |
93 | Neptunium | Np | Actinoid | 3, 4, 5, 6, 7 | 3 in NpCl3, 4 in NpCl4, 5 in NpF5, 6 in NpF6, 7 in NpO23+ |
94 | Plutonium | Pu | Actinoid | 2, 3, 4, 5, 6, 7 | 2 in PuO, 3 in PuCl3, 4 in PuO2, 5 in PuF5, 6 in PuF6, 7 in PuO23+ |
95 | Americium | Am | Actinoid | 2, 3, 4, 5, 6, (7) | 2 in AmCl2[34], 3 in AmF3, 4 in AmF4, 5, 6 in Ionen: AmO2+ bzw. AmO22+[35], 7 in AmO53− (unsicher)[36] |
96 | Curium | Cm | Actinoid | 3, 4 | 3 in CmCl3, 4 in CmF4 |
97 | Berkelium | Bk | Actinoid | 3, 4 | 3 in BkF3, 4 in BkF4 |
98 | Californium | Cf | Actinoid | 2, 3, 4 | 2 in CfI2, 3 in CfF3, 4 in CfF4 |
99 | Einsteinium | Es | Actinoid | 2, 3 | 2 in EsI2, 3 in EsI3 |
100 | Fermium | Fm | Actinoid | 3 | **** |
101 | Mendelevium | Md | Actinoid | 3 | **** |
102 | Nobelium | No | Actinoid | 2, 3 | **** |
103 | Lawrencium | Lr | Actinoid | 3 | **** |
104 | Rutherfordium | Rf | 4 ( IV-B) | 4 * | **** |
105 | Dubnium | Db | 5 ( V-B) | 3, 4, 5 * | **** |
106 | Seaborgium | Sg | 6 ( VI-B) | 6 * | **** |
107 | Bohrium | Bh | 7 ( VII-B) | 7 | **** |
108 | Hassium | Hs | 8 ( VIII-B) | 8 oder niedriger * | **** |
109 | Meitnerium | Mt | 9 ( VIII-B) | 3, 4, 6 * | **** |
110 | Darmstadtium | Ds | 10 ( VIII-B) | 2, 4, 6 * | **** |
111 | Roentgenium | Rg | 11 ( I-B) | 3 * | **** |
112 | Copernicium | Cn | 12 ( II-B) | 2 | **** |
113 | Nihonium | Nh | 13 ( III-A) | 3 | **** |
114 | Flerovium | Fl | 14 ( IV-A) | 4 | **** |
115 | Moscovium | Mc | 15 ( V-A) | 3 | **** |
116 | Livermorium | Lv | 16 ( VI-A) | 2 | **** |
117 | Tenness | Ts | 17 ( VII-A) | 1 | **** |
118 | Oganesson | Og | 18 ( VIII-A) | 0 | **** |
Anmerkungen:
*
Oxidationszahl ist noch unbekannt respektive wird vermutet.
**
Das Kohlenstoffatom mit der angegebenen Oxidationszahl ist fettgeschrieben.
***
Die chemischen Eigenschaften von Astat konnten aufgrund der geringen verfügbaren Mengen bisher nur mit Tracerexperimenten festgestellt werden.
****
Aufgrund der kurzen Lebensdauer und der geringen Verfügbarkeit können nur Tracerexperimente auf das Vorkommen der Oxidationsstufen schließen lassen. Eine Isolierung von entsprechenden Verbindungen ist (noch) nicht erfolgt und bei den meisten dieser Elemente auch höchst unwahrscheinlich.
Weblinks
BearbeitenEinzelnachweise
Bearbeiten- ↑ Dong, Xiao; Oganov, Artem R. (25. April 2014). "Stable Compound of Helium and Sodium at High Pressure". arxiv:1309.3827.
- ↑ Wang, Qiang; Wang, Xuefeng (21 February 2013). "Infrared Spectra of NgBeS (Ng = Ne, Ar, Kr, Xe) and BeS2 in Noble-Gas Matrices". The Journal of Physical Chemistry A. 117 (7): 1508–1513. doi:10.1021/jp311901a.
- ↑ M. L. Fornasini: Structures of Ba8Ga7, Sr8Ga7 and Sr8Al7. In: Acta Crystallographica Section C Crystal Structure Communications. 39, S. 943, doi:10.1107/S0108270183006940.
- ↑ Helmut Ehrenberg, Hermann Pauly, Michael Knapp, Joachim Gröbner, Djordje Mirkovic: Tetragonal low-temperature structure of LiAl. In: Journal of Solid State Chemistry. 177, 2004, S. 227, doi:10.1016/S0022-4596(03)00419-5.
- ↑ Werner Uhl: Tetrakis[bis(trimethylsilyl)methyl]dialan(4), eine Verbindung mit Aluminium—Aluminium-Bindung. In: Zeitschrift für Naturforschung B. 43, 1988, doi:10.1515/znb-1988-0905.
- ↑ Markku Räsänen, Leonid Khriachtchev, Mika Pettersson, Nino Runeberg, Jan Lundell: A stable argon compound. In: Nature. 406, S. 874, doi:10.1038/35022551.
- ↑ Ellis, J. (1990). "Highly Reduced Metal Carbonyl Anions: Synthesis, Characterization, and Chemical Properties". Advances In Organometallics. 31: 1–51. doi:10.1016/S0065-3055(08)60508-0
- ↑ Bandy, J. A.; Berry, A.; Green, M. L. H.; Perutz, R. N.; Prout, K.; Verpeautz, J.-N. (1984). "Synthesis of anionic sandwich compounds: [Ti(η-C6H5R)2]– and the crystal structure of [K(18-crown-6)(µ-H)Mo(η-C5H5)2]". Inorganic Chemistry. 52 (4): 729–731. doi:10.1039/C39840000729
- ↑ Braunschweig, H. et al. (2015). "Ansa-Bridged Bis(benzene) Titanium Complexes". Chemistry A European Journal. 21 (31): 11056–11064. doi:10.1002/chem.201500737
- ↑ Andersson, N.; Balfour, Walter J.; Bernath, Peter F.; Lindgren, Bo; Ram, Ram S.; et al. (2003). "Emission spectra of TiH and TiD near 938 nm". J. Chem. Phys. 118 (8): 10543. doi:10.1063/1.1539848
- ↑ Warnock, Garry F. P.; Philson, Stephen B.; Ellis, John E. (1984). "Characterization of pentacarbonylvanadate(–III) and hydridopentacarbonylvanadate(–II) by 13C, 15V, and 1H n.m.r. spectroscopy". J. Chem. Soc., Chem. Commun., 1984, 893-894. doi:10.1039/C39840000893
- ↑ Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. (2004). "Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond". Science. 305 (5687): 1136–8. doi:10.1126/science.1101356
- ↑ Bobby D. Ellis, Charles L. B. Macdonald: Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters. In: Inorganic Chemistry. 43, 2004, S. 5981, doi:10.1021/ic049281s.
- ↑ M. Baudler, H.-J. Stassen: Beiträge zur Chemie des Arsens. I. Darstellung und Eigenschaften von Diarsen-tetrajodid. In: Zeitschrift für anorganische und allgemeine Chemie. 343, 1966, S. 244, doi:10.1002/zaac.19663430504.
- ↑ Ulrik K. Klaening, Benon H. J. Bielski, K. Sehested: Arsenic(IV). A pulse-radiolysis study. In: Inorganic Chemistry. 28, 1989, S. 2717, doi:10.1021/ic00313a007.
- ↑ a b M. Gorlov, A. Fischer, L.A. Kloo: Dimeric palladium and platinum complexes isolated in Lewis-acidic media. In: Inorganica Chimica Acta, 362(2), 2009, S. 605–609, doi:10.1016/j.ica.2008.04.006.
- ↑ J. D. Corbett, W. J. Burkhard, L. F. Druding: Stabilization of the Cadmium(I) Oxidation State. The System Cd-Cd21(AlCl4)2-Cd2(AlCl4)2. In: Journal of the American Chemical Society, 83(1), 1961, S. 76–80, doi:10.1021/ja01462a016.
- ↑ S.M. Kauzlarich, (1994), Zintl Compounds, Encyclopedia of Inorganic Chemistry, John Wiley & sons, ISBN 0-471-93620-0
- ↑ Michael Boss, Denis Petri, Frank Pickhard, Peter Zönnchen, Caroline Röhr: Neue Barium-Antimonid-Oxide mit den Zintl-Ionen [Sb]3−, [Sb2]4− und 1∞[Sbn]n−. In: Zeitschrift für anorganische und allgemeine Chemie. 631, 2005, S. 1181, doi:10.1002/zaac.200400546.
- ↑ Petr Šimon, Frank de Proft, Roman Jambor, Aleš Růžička, Libor Dostál: Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures. In: Angewandte Chemie. 122, 32, 2010, S. 5600–5603, doi:10.1002/ange.201002209.
- ↑ Rainer Mattes, Dieter Rühl: Crystal structure of antimony(II) monothiobenzoate, Sb(PhCOS)3. In: Inorganica Chimica Acta. 84, 1984, S. 125, doi:10.1016/S0020-1693(00)87680-X.
- ↑ Nobuyoshi Shinohara, Masaaki Ohshima: Production of Sb(IV) Chloro Complex by Flash Photolysis of the Corresponding Sb(III) and Sb(V) Complexes in CH3CN and CHCl3. In: Bulletin of the Chemical Society of Japan. 73, 2000, S. 1599, doi:10.1246/bcsj.73.1599.
- ↑ Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M.: Advanced Inorganic Chemistry, Sixth Edition, Wiley India Pvt., 2007, S. 1128, ISBN 81-265-1338-1.
- ↑ V. I. Spitzin, L. I. Martynenko, J. U. M. Kiselew: Anwendung der Edelgasfluoride zur Darstellung von Verbindungen vierwertiger Lanthanoide. In: Zeitschrift f�r anorganische und allgemeine Chemie. 495, 1982, S. 39, doi:10.1002/zaac.19824950105.
- ↑ Breimair, Josef, Manfred Steimann, Barbara Wagner, Wolfgang Beck: Nucleophile Addition von Carbonylmetallaten an kationische Alkin-Komplexe [CpL2M(η2-RC≡CR)]+ (M = Ru, Fe): μ-η1:η1-Alkin-verbrückte Komplexe. In: Chemische Berichte. 123. Jahrgang, 1990, S. 7, doi:10.1002/cber.19901230103.
- ↑ Hashem Shorafa, Konrad Seppelt: Osmium(VII) Fluorine Compounds. In: Inorganic Chemistry. Band 45, Nr. 19, 2006, S. 7929–7934, doi:10.1021/ic0608290.
- ↑ Guanjun Wang, Mingfei Zhou, James T. Goettel, Gary G. Schrobilgen, Jing Su, Jun Li, Tobias Schlöder, Sebastian Riedel: Identification of an iridium-containing compound with a formal oxidation state of IX. In: Nature. Band 514, 21. August 2014, S. 475–477, doi:10.1038/nature13795.
- ↑ S. Ulvenlund, J. Rosdahl, A. Fischer, P. Schwerdtfeger, L. Kloo: Hard Acid and Soft Base Stabilisation of Di- and Trimercury Cations in Benzene Solution – A Spectroscopic, X-ray Scattering, and Quantum Chemical Study. In: European Journal of Inorganic Chemistry, 4, 1999, S. 633–642, doi:10.1002/(SICI)1099-0682(199904)1999:4<633::AID-EJIC633>3.0.CO;2-D
- ↑ Xuefang Wang; Lester Andrews; Sebastian Riedel; Martin Kaupp (2007). "Mercury Is a Transition Metal: The First Experimental Evidence for HgF4." Angew. Chem. Int. Ed. 46 (44): 8371–8375. doi:10.1002/anie.200703710.
- ↑ R. J. Cava et al., Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na3Bi, APL Mater. 3, 041504 (2015). doi:10.1063/1.4908158.
- ↑ Godfrey, S. M.; McAuliffe, C. A.; Mackie, A. G.; Pritchard, R. G. (1998). Nicholas C. Norman, ed. Chemistry of arsenic, antimony, and bismuth. Springer, pp. 67–84, ISBN 0-7514-0389-X.
- ↑ Fields, Paul R.; Stein, Lawrence; Zirin, Moshe H. (1962). "Radon Fluoride". Journal of the American Chemical Society. 84 (21): 4164–4165. doi:10.1021/ja00880a048.
- ↑ J.D. Farr, A.L. Giorgi, M.G. Bowman, R.K. Money: The crystal structure of actinium metal and actinium hydride. In: Journal of Inorganic and Nuclear Chemistry. 18, 1961, S. 42, doi:10.1016/0022-1902(61)80369-2.
- ↑ R.D. Baybarz: The preparation and crystal structures of americium dichloride and dibromide. In: Journal of Inorganic and Nuclear Chemistry. 35, 1973, S. 483, doi:10.1016/0022-1902(73)80560-3.
- ↑ S. R. Gunn, B. B. Cunningham: The Heats of Formation of AmO2+(aq) and AmO2++(aq) in 1 M HClO4. In: Journal of the American Chemical Society. 79, 1957, S. 1563, doi:10.1021/ja01564a011.
- ↑ Wolfgang H. Runde, Wallace W. Schulz: Americium ( vom 17. Juli 2010 im Internet Archive), in: Lester R. Morss, Norman M. Edelstein, Jean Fuger (Hrsg.): The Chemistry of the Actinide and Transactinide Elements, Springer, Dordrecht 2006; ISBN 1-4020-3555-1, S. 1367 (doi:10.1007/1-4020-3598-5_8).